Impacto del consumo de harina de maíz con un bajo nivel de enriquecimiento en niños de zonas rurales

M.ª del Refugio Carrasco Quintero1, L. Ortiz Hernández2, A. Chávez Villasana3, J. A. Roldán Amaro4, N. Guarneres Soto1, J. Aguirre Arenas1 y J. A. Ledesma Solano5

1Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”. 2Universidad Autónoma Metropolitana. Unidad Xochimilco, México.

Resumen

Introducción: El maíz ha representado desde la época prehispánica, la planta más importante como alimento de la población mexicana, particularmente en los sectores mayóricos y zonas marginales. En este contexto el enriquecimiento del producto como harina, implica el aumento de la calidad nutritiva del mismo, especialmente porque el maíz es un alimento básico.

Objetivo: Evaluar el efecto del consumo de una harina de maíz enriquecida con un 3% de soja, vitaminas y minerales sobre el crecimiento y desarrollo de niños lactantes y preescolares.

Material y métodos: Estudio experimental con una duración de 10 meses. El grupo experimental (n = 195) recibió harina de maíz enriquecida; mientras que el grupo control (n = 200) recibió harina sin enriquecimiento. Los indicadores fueron: estado nutricional, desarrollo mental y psicomotriz y los niveles de hemoglobina sanguínea.

Resultados: En la población total no se observaron diferencias entre el grupo experimental y el control. Sin embargo, existieron mejorías en los índices de peso para talla y peso para edad en los grupos de niños que consumieron la harina enriquecida y en el caso de los niños mayores de un año; siendo hijos de mujeres indígenas que residían en localidades marginales.

Conclusiones: La harina de maíz enriquecida muestra ser una alternativa que beneficia a la población infantil con más deficiencias nutricionales. Sin embargo, se requiere de una intervención más prolongada de tiempo, para tener mejores resultados.

(Nutr Hosp. 2011;26:1097-1104)
DOI:10.3305/nh.2011.26.5.5127

Correspondencia: Marla del Refugio Carrasco Quintero.
Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”.
Vasco de Quiroga, 15, col. Sección XVI.
14000 México.
E-mail: carrascoquin@hotmail.com
1° Revisión: 29-IX-2010.
2° Revisión: 8-XI-2010.
Aceptado: 4-III-2011.

IMPACT OF CONSUMPTION OF CORN FLOUR WITH LOW LEVEL ENRICHMENT IN CHILDREN OF RURAL ZONES

Abstract

Introduction: Corn has been from the prehispanic era, the most important feeding plant in the Mexican population, particularly in the most important sectors and in marginal areas. In this setting, enriching the product as flour implies an increase in its nutritional quality, especially because corn is the basic food.

Objective: To assess the effect of the consumption of corn flour enriched with 3% soybean, vitamins, and minerals on the growth and development of infants and preschool children.

Material and methods: Experimental study lasting 10 months. The experimental group (n = 195) received enriched corn flour whereas the control group (n = 200) received non-enriched flour. The indicators were: nutritional status, mental and psychomotor development, and blood hemoglobin levels.

Results: In the total sample, there were no differences between the experimental group and the control group. However, there were improvements in the weight-to-height and weight-to-age indexes in children consuming enriched flour and in children older than one year, who were the babies of indigenous women living in marginal areas.

Conclusions: Enriched corn flour appears to be an alternative benefitting the children population with higher nutritional deficiencies. However, a longer intervention is necessary to obtain better results.

(Nutr Hosp. 2011;26:1097-1104)
DOI:10.3305/nh.2011.26.5.5127

Introducción

En el contexto nacional, la población rural de México ha ido disminuyendo a lo largo del siglo XX en relación a la población urbana. En 1950, la población rural representaba 57.4% contra 42.6% de población urbana, hasta llegar a 23.2% rural y 76.8% de urbana de acuerdo a las últimas estadísticas del 2010. Sin embargo, aun cuando el porcentaje de la población rural al nivel nacional no es mayoría, sí lo sigue siendo a nivel estatal, particularmente en los estados más pobres, donde la mayoría de la gente sigue viviendo en el campo y predomina la población indígena.

La situación nutricional es un buen elemento para medir las condiciones en que se encuentra una sociedad. En el caso de México, se sabe que existen enormes diferencias socioeconómicas y sanitarias. Por un lado, entre la población urbana la obesidad y sus comorbididades son un problema de salud pública, mientras que las zonas rurales e indígenas la desnutrición infantil sigue siendo prevalente y está vinculada estrechamente con la pobreza y la marginación. La desnutrición infantil se presenta con mayor intensidad en los hogares que residen en localidades rurales (menores de 2,500 habitantes), donde se observan niveles más altos que en las zonas urbanas (31.5% y 12.3%, respectivamente) y en especial en los niños menores de 5 años que son quienes más la padecen, siendo los principales estados que tienen prevalencia de desnutrición, Chiapas, Oaxaca, Guerrero, Veracruz, Yucatán, Hidalgo, Puebla y Campeche, principalmente.

La población indígena continúa siendo uno de los grupos más desprotegidos de nuestra sociedad. Los indicadores sociales de pobreza, analfabetismo, desnutrición, mortalidad infantil y baja esperanza de vida son los principales determinantes de la enfermedad social que padece esta población (comunidades indígenas). De acuerdo a la Encuesta Nacional de Salud y Nutrición aplicada en México en el año 2006, describe que los niños menores de cinco años, tienen prevalencia de desnutrición de acuerdo al indicador de talla para la edad y peso bajo, siendo esto tres veces más alta en la población indígena que en aquella que no lo era.

La reducción de la prevalencia de desnutrición requiere de manera permanente un conjunto articulado de acciones para la vigilancia de la salud y nutrición infantil y, desde luego, también de una eficiente política económica-social, de salud pública y de seguridad alimentaria. Dentro de estas políticas, una medida importante para la salud es la posibilidad de agregar vitaminas y minerales que la población necesita. Al hacerlo se puede ayudar a prevenir problemas tan graves como malformaciones congénitas y deficiencias como la anemia, entre otras.

Una alternativa para disminuir la desnutrición infantil, es adicionar nutrientes a los alimentos de consumo frecuente. El maíz es el alimento básico de México y otros países de Latinoamérica. Se sabe que éste alimento es la fuente principal de energía y llega a proporcionar más del 50% del total de sus requerimientos diarios que necesita una persona, principalmente en la población rural.

Uno de los alimentos de uso común en México y que es derivado del maíz, es la tortilla de consumo cotidiano sobretodo, en las familias de escasos recursos económicos donde es mayor su ingesta, además de ser un alimento con connotaciones culturales milenarias, es la base en las regiones indígenas. Su condición de alimento básico lo hace único para enriquecerlo y así ayudar a mejorar el estado de nutrición, no sólo de los lactantes, sino de toda la familia. Esto es particularmente relevante, considerando que la alimentación de la población marginal es deficiente en proteína, riboflavina, ácido fólico, niacina, vitamina A, hierro y cinc, además que cuando la tortilla se procesa demasiado es deficiente en tiamina y en vitamina C.

El enriquecimiento de la harina de maíz es una acción relativamente fácil y poco costosa, que no afecta hábitos y que produce resultados positivos en la salud. Desde hace más de 60 años se propuso el enriquecimiento del maíz, pero diferentes estudios han propuesto el enriquecimiento de la harina de maíz con soja, dado que se complementan sus aminoácidos y se puede hacer una mezcla de harina de mejor calidad nutricional e ideal para el consumo de poblaciones con deficiencias nutricionales. El consumo de la harina de maíz enriquecida presenta muchas ventajas.

Existen diferentes estudios, sobre la harina de maíz, en Venezuela y Guatemala, donde se obtuvieron muy buenos resultados con la harina. En el caso de México, uno de los estudios más sobresalientes en la materia, fue el realizado en una población Otomí, que tuvo una duración de 5 años, donde se fortificó la harina de maíz con un 5-6% de soja, obteniendo como resultados, que los niños que consumieron la harina fortificada, mejoraron en su estatura, peso, desarrollo cognitivo, rendimiento físico y disminución de enfermedades, así como en los aspectos psicosociales y una disminución de anemia.

El objetivo del presente estudio fue evaluar el impacto del consumo de una harina de maíz enriquecida (con soja, vitaminas y minerales) en el crecimiento, nivel de hemoglobina y el desarrollo cognitivo de niños preescolares que residen en zonas rurales de México.

Material y métodos

Se realizó un estudio experimental, en el cual la exposición consistió en el consumo de harina de maíz enriquecida con soja, vitamina A, hierro, cinc, niacina y ácido fólico; los indicadores a evaluar, fueron el estado nutricional, el desarrollo mental y psicomotriz y niveles de hemoglobina sanguínea. Se trabajó con la...
población de comunidades pertenecientes al Estado de México (Santiago Acatzingo, San Felipe, Pueblo Nuevo, Santiago, San Francisco y San Antonio del municipio de Axtoculco), Hidalgo (Oxotamal I, II y III y Acapulco I y II del municipio de Huejutla) y Veracruz (Ixpila, Mesa del Rancho y Amanzop de municipio de Huatusco).

Al final del estudio la muestra quedó integrada con 395 lactantes y preescolares de ellos 185 fueron niños y 210 niñas. Para participar en el estudio fue necesario que las familias residieran en los municipios antes mencionados, que no tuvieran enfermedades neurológicas y que estuvieran dentro del rango de edad de interés (de 7 a 24 meses). La asignación de los niños a la intervención fue aleatoria. En cada comunidad se realizó una reunión con las familias en las que se les explicaron los objetivos y procedimientos del estudio. Se obtuvo el consentimiento informado por escrito de cada familia. Tanto las familias participantes como el equipo de investigación desconocían quienes recibían la harina enriquecida (grupo experimental) y sin enriquecer (grupo control). Al final del estudio existió una deserción de 5 casos.

La harina de maíz enriquecida contenía por cada 100 gramos: 1.5 g de harina de soja, que representa el 3%, 42.4 mg de hierro, 33.3 mg de cinc, 120 mcg de vitamina A, 6.5 mg de nicotina y 548 mcg de ácido fólico. Al inicio del estudio, a los cuatro meses y a los ocho meses se obtuvieron muestras de la harina distribuida en cada comunidad, analizadas previamente para verificar que contenían las concentraciones definidas de soja y micronutrientes. Cada mes, camiñones del instituto acudían a las comunidades para entregar las harinas, que se otorgaban a las familias de manera gratuita.

A cada familia se le entregaban 20 kg de harina al mes; las familias con 10 o más miembros recibían 5 kg adicionales. En cada entidad federativa existía una nutrióloga y una psicóloga, quienes eran apoyadas por dos promotoras de la comunidad. Las promotoras comunitarias se encargaban de hacer visitas domiciliarias para visitar a las familias a que asistieran a las actividades del proyecto y para identificar a niños en riesgo de desnutrición y, de ser el caso, canalizar a los niños a instituciones de salud. Las promotoras indagaban el manejo de la harina dentro del hogar y hacían énfasis en que fuera consumida por los miembros del hogar y no se le diera otro uso (Ej. venderla). Se hizo y distribuyó un recetario de preparaciones con harina para promover su consumo en los niños. La nutrióloga realizó una sesión de demostración para que las madres observaran la preparación de las recetas con harina. Las psicólogas realizaron talleres para identificar el nivel de desarrollo de los niños y algunos aspectos prácticos de estimulación temprana.

Tanto al inicio del estudio como a los diez meses de iniciado, a cada niño se le evaluó el peso, la estatura, el desarrollo cognitivo mediante la Escala de Bayley y las concentraciones de hemoglobina. El peso y la longitud supina o la estatura (de acuerdo a la edad del niño) fueron evaluadas según técnicas estandarizadas. La evaluación antropométrica la realizaron tres nutriólogas que fueron capacitadas.

La edad de los niños fue estimada a partir de la fecha de nacimiento registrada en el acta de nacimiento. A partir de estas mediciones se estimaron las puntuaciones Z de los índices de peso para edad, peso para talla y talla para edad. Para ello se utilizaron las tablas normativas de crecimiento de la Organización Mundial de la Salud.

La concentración de hemoglobina en sangre se determinó mediante el equipo de HemoCue que es el fotómetro portátil más frecuentemente usado en trabajo de campo por su comprobada calidad. Para lo cual se siguieron las instrucciones del fabricante. Los niveles de hemoglobina estimados son expresados en gramos por decílice (g/dl).

La escala de Desarrollo Infantil de Bayley, es un instrumento diseñado para evaluar el desarrollo que debe de tener y presentar el niño durante los primeros dos años y medio de vida. La escala evalúa el desarrollo mental (DM) y desarrollo psicomotriz (DP), con ambas puntuaciones se obtiene un índice de desarrollo cognitivo del infante, con el cual se clasifica al niño de acuerdo a las condiciones en que se encuentra su desarrollo. Para cada área de desarrollo se tiene una puntuación, cuya media en la población de referencia es de 100 y la desviación estándar de 16.

Como variables modificadoras de efecto se consideraron el sexo y la edad al inicio del estudio (hasta 12 meses, de 12.01 a 18.00 meses y 18.01 meses y más) de los niños; la condición de indígena (definido de acuerdo a si la madre hablaba un idioma distinto al español) y el municipio de residencia.

Para el análisis descriptivo se estimaron frecuencias absolutas y relativas de las variables categóricas; mientras que para las variables continuas se estimó la media. Para saber si existían diferencias estadísticamente significativas entre los niños del grupo control y del grupo experimental se estimaron las estadísticas \(\chi^2 \) y de Student para muestras independientes. Dado el carácter longitudinal del estudio se estimaron modelos de regresión lineal para mediciones repetidas, en los cuales las variables dependentes fueron las puntuaciones Z de peso para edad, talla para edad y peso para talla; el nivel de hemoglobina y las puntuaciones de desarrollo mental y psicomotriz. En los modelos se estimaron todas las interacciones posibles de la exposición de interés (harina enriquecida) con las variables modificadoras (edad y sexo de los niños, condición de indígena y municipio). Para el análisis bivariado se consideró que existían diferencias estadísticamente significativas cuando \(p < 0.05 \); mientras que en los modelos de regresión se estimó que una interacción era estadísticamente significativa cuando \(p < 0.10 \), éste último criterio es sugerido por Méndez. Las interacciones estadísticamente significativas fueron graficadas.
<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Harina de maíz promedio a</th>
<th>Harina de maíz enriquecida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harina de soja</td>
<td>–</td>
<td>1.5 g</td>
</tr>
<tr>
<td>Hierro</td>
<td>3.90 mg</td>
<td>42.4 mg</td>
</tr>
<tr>
<td>Cinc</td>
<td>2.00 mg</td>
<td>33.3 mg</td>
</tr>
<tr>
<td>Retinol</td>
<td>0.50 mcg</td>
<td>120 mcg</td>
</tr>
<tr>
<td>Niacina</td>
<td>1.30 mg</td>
<td>6.5 mg</td>
</tr>
<tr>
<td>Ácido fólico</td>
<td>–</td>
<td>5.48 mcg</td>
</tr>
</tbody>
</table>

Resultados

En la tabla I, se pueden observar las comparaciones entre la harina normal y la enriquecida, con relación a los principales nutrientes.

En la tabla II, se puede observar que al inicio del estudio no existieron diferencias entre el grupo control y el experimental respecto a las proporciones de niños y niñas, de población indígena y de cada uno de los municipios en los que se llevó a cabo el estudio. Previo a recibir las harinas, tampoco existieron diferencias entre los grupos en edad, peso para edad, talla para edad, peso para talla, desarrollo mental y desarrollo psicométrico. El grupo que recibió la harina enriquecida tuvo, al inicio de la intervención, niveles más altos de hemoglobina. Al término del seguimiento, no existieron diferencias entre los grupos en peso para edad, talla para edad, peso para talla, niveles de hemoglobina, desarrollo mental y desarrollo psicométrico.

Sin embargo, al estimar la interacción del tipo de harina con otras variables (sexo y edad del niño; condición de indígenismo y municipio) sí se observó efecto de la harina en ciertos grupos. En la tabla III, se observa que, considerando como variable dependiente el peso para talla, existió interacción del tipo de harina con la condición indígena, la edad y el municipio. En la figura 1 se aprecia que el índice de peso para talla mejora en los niños que recibieron la harina enriquecida; sin embargo, dicha mejora es superior en los niños mayores de año y medio; en el caso de los niños que recibieron harina sin adicionar el índice empera (menores de un año y medio): mientras que en los niños de un año y medio el índice aumenta menos que en los niños que consumieron las harina enriquecida.

La condición indígena modificó el efecto de la harina sobre el índice de peso para talla. Entre los niños indígenas, que recibieron la harina enriquecida claramente mejoraron el índice de peso para talla; mientras que los niños del grupo control mantuvieron sin cambio su situación. En los niños no indígenas que recibieron la harina enriquecida mejoraron ligeramente su índice de peso para talla; al tiempo que los niños que no recibieron la harina sin adicionar tuvieron un ligero deterioro.

En las gráficas de la figura 1 se puede observar que existen diferencias en los cambios del peso de los niños según el municipio en que residen. Mientras que en el Estado de México el valor de peso para talla aumenta; en el estado de Hidalgo tienden a disminuir y en Veracruz los cambios son mínimos. Al considerar el tipo de harina; en Veracruz los niños que recibieron la harina enriquecida tuvieron mayores incrementos que el grupo control; mientras que en Hidalgo los niños que recibieron la harina enriquecida los decrementos fueron menores; y en Veracruz los niños del grupo experimental mejoraron ligeramente su condición mientras que en el grupo control se observa una ligera disminución.

<table>
<thead>
<tr>
<th>Tabla I</th>
<th>Comparación de harinas en 100 gramos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrientes</td>
<td>Harina de maíz promedio a</td>
</tr>
<tr>
<td>Harina de soja</td>
<td>–</td>
</tr>
<tr>
<td>Hierro</td>
<td>3.90 mg</td>
</tr>
<tr>
<td>Cinc</td>
<td>2.00 mg</td>
</tr>
<tr>
<td>Retinol</td>
<td>0.50 mcg</td>
</tr>
<tr>
<td>Niacina</td>
<td>1.30 mg</td>
</tr>
<tr>
<td>Ácido fólico</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla II</th>
<th>Características descriptivas de niños que consumieron harinas con y sin micronutrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harina enriquecida</td>
<td>Harina sin enriquecer</td>
</tr>
<tr>
<td>n</td>
<td>195</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sexo</th>
<th>Niños</th>
<th>Niñas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indígeno</td>
<td>90,8</td>
<td>89,0</td>
</tr>
<tr>
<td>España</td>
<td>9,2</td>
<td>11,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Atlacomulco b</th>
<th>Huejúchitl b</th>
<th>Huatusco b</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,2</td>
<td>36,5</td>
<td>0,957</td>
<td></td>
</tr>
<tr>
<td>35,2</td>
<td>35,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,5</td>
<td>29,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla III</th>
<th>Estadística descriptiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad (meses)</td>
<td>Medio (DE)</td>
</tr>
<tr>
<td>Basal</td>
<td>16 (0.17)</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>24 (5.27)</td>
</tr>
<tr>
<td>Peso para edad (puntación Z)</td>
<td>Basal</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>-0.73 (0.97)</td>
</tr>
<tr>
<td>Talla para edad (puntación Z)</td>
<td>Basal</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>-2.24 (1.07)</td>
</tr>
<tr>
<td>Hemoglobina (mg/dl)</td>
<td>Basal</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>11,89 (1.02)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desarrollo mental</th>
<th>Medio (DE)</th>
<th>Medio (DE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>101,5 (7,12)</td>
<td>100,6 (8,55)</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>103,1 (7,34)</td>
<td>102,5 (7,01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desarrollo psicométrico</th>
<th>Medio (DE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>98,4 (10,19)</td>
</tr>
<tr>
<td>Seguimiento</td>
<td>100,8 (7,06)</td>
</tr>
</tbody>
</table>

D.E., desviación estándar; *Estado de México*; Hidalgo; Veracruz.
En la tabla IV se puede apreciar que el tipo de harina interactuó con el municipio de residencia en la predicció

La desnutrición humana es una enfermedad fácil de prevenir y curar. Combatirla es la mejor inversión que puede hacer el gobierno en la sociedad. Con ello se contribuye a reducir la morbilidad, la mortalidad y se maximiza el potencial genético de crecimiento y desarrollo del ser humano. El estado de nutrición de una población, es quizá el fenómeno biológico que mejor muestra la relación salud y sociedad. Resulta entonces de gran importancia saber qué se puede y se debe hacer con las poblaciones rurales e indígenas en quienes aun la desnutrición es un problema frecuente. Una alternativa es la del presente estudio: la adición de nutrientes a los alimentos, particularmente los de consumo básico. La harina de maíz enriquecida es una buena propuesta para mejorar la tortilla que ha sido el alimento histórico en México.

Cuando nos referimos a las zonas rurales del país, estamos hablando de las regiones con mayor margina-

Impacto del consumo de harina de maíz en niños de zonas rurales

Nutr Hosp. 2011;26(5):1097-1104 1101
vivir en las cordilleras y montañas. Problema que se agrava porque existe una numerosa población infantil, que es al mismo tiempo el sector más vulnerable de la sociedad. Estos niños no sólo a nivel social están marginados, si no también en su alimentación. Ante esta situación son pocas las instituciones que están interesadas en esta realidad y además querer ayudar. En este contexto surge la propuesta de apoyar a los niños en situación de ruralidad marginal y poder mejorar su alimentación, sin alterar sus hábitos alimentarios y costumbres.

Cada etapa de la vida juega un papel fundamental en el desarrollo humano, sin embargo en el caso concreto de los pequeños hay períodos de la vida en los que los cambios en su desarrollo son más notorios en comparación con otros. En esta investigación, los niños mayores de 18 meses son quienes manifestaron tener mejoría en el índice de peso para talla con la ingesta de la harina enriquecida. Lo cual se puede explicar, porque los niños entre más grandes sean, mayor cantidad de alimento sólido ingieren. En este sentido, los pequeños alimentados exclusivamente con lactancia materna no recibieron los beneficios de la harina enriquecida. Otro factor importante de impacto de la harina enriquecida, fue con la población más marginada e indígena donde se observaron mejores efectos. La población indígena y las localidades con mayor pobreza (las de Huejutla, Hidalgo), son las que presentaron mayores carencias, y por tanto su consumo de la harina impactó más en la ganancia de peso.

Es interesante notar que los cambios positivos observados se dieron en los índices de peso para talla y peso para edad; no así en el de talla para la edad. El hecho de que el índice de peso para talla haya tenido una respuesta favorable puede indicar que la desnutrición que en ese momento presentaban, es fácil de modificar con un alimento fortificado. Asimismo, es alentador verificar que también existió efecto favorable en el índice de peso para la edad, el cual es un excelente predictor de riesgo de mortalidad en los niños menores de cinco años. El peso refleja la masa corporal de los sujetos y es un indicador adecuado del balance de energía en
corto plazo, mientras que para ver un incremento en la estatura debe de existir un periodo de tiempo más largo.

La harina enriquecida tuvo efecto en el peso de los niños estudiados. Lo que indica que agregar de 3% de harina de soja desgrasada se encuentra en el límite de la eficiencia, por ser equivalente a 1,5 g de proteína, que se suma a los 7 g de proteína del maíz, que ya tiene. Con esto sólo se aumenta menos del 20% de proteína. Aunque también hay que destacar que con ello se obtiene la calidad del valor proteico neto del maíz. Estos niveles son bajos para niños pequeños, sobretodo para las comunidades, donde al niño no le proporcionan muchos alimentos con proteína, solo a veces huevo y rara vez leche, siendo la tortilla uno de sus principales alimentos.

Otro aspecto importante de mencionar fue el tiempo (10 meses), en el que se llevó abajo el estudio, factor que se tomó como un reto, al ser corto el tiempo y que a pesar de ello se obtuvieron buenos resultados, aunque sólo haya sido en la población indígena. Situación que por falta de recursos económicos, no se pudo ampliar por más tiempo. Lo observado no significa que el efecto del enriquecimiento del maíz demorara mucho tiempo, sino que el procedimiento para probar de manera significativa (población no indígena) su impacto es difícil porque en la práctica no se resuelve en plazos cortos.

En relación a los niveles de hemoglobina y el desarrollo cognitivo de los pequeños, no existieron diferencias entre el grupo experimental y el control. Cuando un infante tiene bajos niveles de hemoglobina (anemia) es indicativo de que no tiene reservas corporales adecuadas de hierro. Lo que entonces sucede es que cuando llegan cantidades extras de hierro, se llenan esas deficiencias y se empieza a recobrar los niveles normales de hemoglobina. Es probable, entonces, que se requiera de mayor tiempo de intervención para observar diferencias en este indicador.

La ausencia de diferencias significativas en el desarrollo cognitivo entre los niños del grupo experimental y el control se puede deber a que en él, no solo influye la alimentación, también se ve afectando por otros aspectos como las condiciones de desarrollo social y del nivel de marginación en que viven los niños. Este tipo de efectos se encuentran relacionados con la ausencia de estimulación psicosocial en edades tempranas del pequeño. Sin embargo, junto con la estimulación temprana, mejorar la calidad de los alimentos durante un periodo prolongado puede redundar en mejor desarrollo cognitivo.

Conclusión

Un elemento a considerar para cualquier acción de enriquecimiento de alimentos, es contar con la opinión y la participación de la población a la que esta dirigido la acción. Dado que es de vital importancia incluirla en el estudio como un sujeto activo de las acciones que se llevaran acabo.

El promover un alimento enriquecido en lugares de extrema pobreza ha sido uno de los impactos obtenidos en este estudio, lo que implica que los niveles de desnutrición pueden disminuir, sobretodo en población indígena infantil, donde aun se siguen manifestando elevados índices de una alimentación deficiente.

El poder llevar acabo un alimento enriquecido y de bajo costo a las comunidades marginadas, es una alter-
nativa que la gente tiene para poder adquirir un pro-
ducto nutritivo y disponible al alcance de todos.

Agradecimientos

Este trabajo fue posible gracias al financiamiento
recibido de DICONSA, antes CONASUPO, que es una
empresa de participación estatal mayoritaria pertene-
ciente a la Secretaría de Desarrollo Social de México.

Referencias

1. Instituto Nacional de Estadística Geografía e Informática
INEGI, Estadísticas históricas de México. INEGI 2000; 4-15.
2. Roldán JA. Historia del hambre en México durante la
segunda mitad del siglo XX, a través de sus regiones críticas, Tesis de
Doctorado en Historia, Facultad de Filosofía y Letras de la Uni-
versidad Autónoma de México. 2010; 93-97.
3. Grupo académico para el estudio, la prevención y el trato-
amiento de la obesidad y el síndrome metabólico CINSHAE. La obesi-
dad y el síndrome metabólico como problema de salud pública.
4. Roldán JA, Avila A, Chávez A, Álvarez M. Regionalización de la
situación nutricional en México. Sociedad Latinoamericana de
Nutrición México – Instituto Nacional de Ciencias Médicas y
5. Fernández P, Tuirán A, Orozco M, Salas G, Canoarea R,
Serrano E. Informe: sobre desarrollo humano de los pueblos
indígenas de México 2006. Comisión Nacional para el Desarro-
ollo de los Pueblos Indígenas CDI-PNUD. México 2006:
informe_desarrollo_humano_pueblos_indigenas_mexico_2006.
pdf
7. Consejo Nacional de Evaluación de la Política de Desarrollo
Social (CONEVAL). Informe de evolución histórica de la
situación nutricional de la población y los programas de alimen-
tación, nutrición y abasto en México. CONEVAL. México
2009; 37-81.
Causas y consecuencias de la deficiencia de hierro sobre la
9. Pee S and Bloem M. Current and potential role of specially for-
mulated foods and food supplements for preventing malnutri-
tion among 6- to 23-month-old children and for treating moder-
ate malnutrition among 6- to 59-month old children. Food and
10. Muñoz Ch y Chávez V. Desnutrición en la infancia: factores
causales. En: Desnutrición. Su Impacto en la salud humana y en
11. Chávez A y Muñoz Ch. El problema de la alimentación y la
nutrición en México. En: La tortilla de Alto Valor Nutritivo. Mc
12. Bressani R, and Arroyave, G. The nutritive value of central
American corns. I. Nitrogen, ether extract, crude fiber and min-
erals of twenty-four varieties in Guatemala of food Science
13. Eggert R.G. and Brinegar MJ. The quality of protein of normal
and high protein com for Growing swine 1953 American Soci-
14. Bressani R, Elias L, Brahman J. Improvement of the protein qual-
ity of corn with soybean protein. Exp Mol Med 1978; 105: 29-
65.
15. Real S, Páez M, Solano L, Fajardo Z. Consumo de harina de
maíz precocida y su aporte de hierro y vitamina A, en preesco-
lar y de bajos recursos económicos. Archivos Latinoamericanos de
modelo de fortificación del maíz con harina de soya, lisina y
otros aminoácidos, en comunidades rurales de bajo nivel socio-
eco nómico. INCAP Guatemala 1972; 278-293.
17. Bayley N. Manual for the Bayley Scales of Infant Develop-
metría. INCMD. México 2004: 4-14.
19. World Health Organization and Onis M, WHO Child Growth
Standards based on length/height, weight and age. Acta Pediatria
2006; 95 (450); 76-85.
20. Méndez I. Modelos estadísticos lineales en la investigación com-
parativa. Serie Monografías. México, Instituto de Investigaciones
21. Peláez M, Torre P, Ysunza A. Elementos Prácticos para el
diagnóstico de la desnutrición. Instituto Nacional de la Nutri-
tión y Centro de Capacitación Inicial para Promotores Comu-
22. "Evolución del programa de combate a la desnutrición infantil
en el Estado de Yucatán. Ed Secretaria de Salud. México
2007. documento interno de trabajo".
23. Papatía E, Wendkos O. Teorías y evaluación de la personalidad,