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respectively. These images show extensive parenchymal damage, 
necrosis, and inflammatory infiltrate with polymorphonuclear cells. 
Figures 3G, 3H and 3I show the preservation of liver tissue and 
reduction in necrosis and inflammatory infiltrate after 24, 36 and 
48 hours, respectively, in animals treated with glutamine. 

NF-κB, TNF-α AND INOS EXPRESSION

NF-κB (Fig. 4), TNF-α (Fig. 5) and iNOS (Fig. 6) levels did not 
differ between control and control + glutamine groups at any 
time of assessment. Animals exposed to TAA demonstrated lower 

Figure 4. 

Reduction in liver NF-κB expression fol-
lowing glutamine administration in a rat 
model of thioacetamide-induced fulminant 
hepatic failure. Digital image (photomicro-
graph, 400x). A. Nuclear factor expression. 
B. Control group. C. Glutamine control 
group. D. TAA Group - 24 hours. E. TAA 
Group - 36 hours. F. TAA Group - 48 hours. 
G. TAA + G Group - 24 hours. H. TAA + G 
Group - 36 hours. I. TAA + G Group - 48 
hours.

Figure 5. 

Reduction in liver TNF-α expression fol-
lowing glutamine administration in a rat 
model of thioacetamide-induced fulminant 
hepatic failure. Digital image (photomicro-
graph, 400 x). A. Tumor necrosis factor 
expression. B. Control group. C. Glutamine 
control group. D. TAA Group - 24 hours. 
E. TAA Group - 36 hours. F. TAA Group - 
48 hours. G. TAA + G Group - 24 hours. 
H. TAA + G Group - 36 hours. I. TAA + G 
Group - 48 hours.
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staining for all proteins as compared to the control groups. Gluta-
mine exposure led to significantly decreased protein expression 
in the TAA + G group.

PROTEIN AND LIPID PEROXIDATION 
MEASUREMENTS

Figure 7A shows a significant reduction in total protein levels 
in all animals exposed to TAA, and an increase in these values 
following the administration of glutamine. In contrast, the TBARS 
content of liver cells indicated increased lipid peroxidation in the 

TAA group as compared to the remaining animals, and decreased 
peroxidation in the TAA + G group as compared to the TAA group 
at all assessment times (Fig. 7B). The elevated TBARS levels in 
the TAA groups are suggestive of more severe liver damage. This 
finding was corroborated by the histological evidence of necrosis 
and inflammatory infiltrate shown in figure 8. 

ANTIOXIDANT ENZYMES

Figure 9 shows the results of antioxidant enzyme activity meas-
urements. GST and SOD (Figs. 9 A and B) levels were significantly 

Figure 6. 

Reduction in liver iNOS expression following 
glutamine administration in a rat model of thio-
acetamide-induced fulminant hepatic failure. 
Digital image (photomicrograph, 400 x). A. Pro-
tein expression. B. Control group. C. Glutamine 
control group. D. TAA Group - 24 hours. E. TAA 
Group - 36 hours. F. TAA Group - 48 hours. G. 
TAA+G Group - 24 hours. H. TAA + G Group - 36 
hours. I. TAA + G Group - 48 hours. 

Figure 7. 

Effects of glutamine on (A) total protein and (B) lipid peroxidation levels as measured by TBARS in a rat model of thioacetamide-induced fulminant hepatic failure. Data 
are expressed as mean ± standard error. *Significant differences were found between TAA animals and all other experimental groups (p < 0.001). #Significant difference 
identified between the TAA + G and TAA groups (p < 0.001).
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higher in the TAA group as compared to the remaining animals, 
and lower in TAA + G than TAA animals after 24, 36 and 48 hours. 
CAT (Fig. 9C) activity was significantly lower in the TAA group as 
compared to the remaining animals and higher in the TAA + G 
than in the TAA group at all three assessment times. GP x (Fig. 9D) 
activity was significantly lower in TAA animals as compared to the 
other groups after 24 hours, but was found to increase in TAA 
animals and decrease in the TAA+G group after 36 and 48 hours. 

DISCUSSION

Although several studies have attempted to develop experi-
mental models of this condition, the mechanisms involved in the 
physiopathogenesis of FHF have not been well established (30). 
Thioacetamide is a highly toxic compound which can cause vari-
ous degrees of liver damage in experimental animals, ranging 
from necrosis and hepatocyte disarray to cirrhosis (8,31). In the 
present study, glutamine was found to attenuate oxidative stress 
and inflammation in TAA-treated rats, similarly to previous findings 
of the effects of antioxidant molecules in animal models of FHF 
(32,33). TAA-administration led to severe liver damage and a high 
mortality rate after a 36- to 48-hour interval. In a study by Shapiro 
et al. (6) a mortality rate of 60% was observed after rats were 
administered 300 mg/kg TAA.

Histological analysis showed extensive necrosis and inflam-
mation in the liver tissue of animals exposed to TAA, which 
points to the toxicity of the substance. Similar results have 
been obtained by other authors (6,7,31,34). Animals treated 
with glutamine exhibited a reduction in the parameters studied, 
demonstrating the protective effects of this substance. These 
findings are in agreement with those obtained by authors who 
assessed the protective effects of glutamine against gastrointes-
tinal damage (16-18).

NF-κB is an important transcription factor required for the 
expression of several genes, especially those related to inflam-
mation, interleukins and adhesion molecules (33). The TAA group 
showed increased expression of NF-κB, TNF-α and iNOS. Similar 
findings were reported by Shapiro et al. (6) and Son et al. (35). 
Glutamine decreased the expression of these proteins in liver tis-

sue. An association between glutamine treatment and decreased 
expression of NF-B and TNF-B was also reported by Lin et al. (14).

TAA led to an increase in AST, ALT, AP, TB and CRE levels, sug-
gesting the presence of liver damage. David et al. (7) also reported 
an increase in AST, ALT and AP levels in models of TAA-induced 
liver damage. Glutamine led to a reduction in the levels of these 
enzymes, pointing to its protective role against hepatocellular dam-
age. Wu et al. (36) found that glutamine improved AST, ALT, AP, CRE 
and albumin levels in pigs exposed to the mycotoxin Deoxynivalenol.

TAA increased LPO by 69.7% after 24 hours, 162.07% after 
36 hours and 124.24% after 48 hours. These results corroborate 
those obtained by De David et al. (7), who also performed experi-
mental studies involving TAA-induced liver damage. Glutamine, 
on the other hand, decreased LPO by 36.36% after 24 hours, 
68.97% after 36 hours and 30.30% after 48 hours. The decrease 
in TBARS following glutamine administration was also associated 
with a decrease in necrosis and inflammation scores at all assess-
ment points (Fig. 8). These findings regarding the hepatoprotective 
role of glutamine were also reported by Marques et al. (18).

GST is a detoxifying enzyme which metabolizes xenobiotic 
substances, inactivating toxic metabolites by conjugation with 
reduced glutathione, thus protecting cells from exogenous and 
endogenous metabolites. In the present study, GST activity 
increased following the administration of TAA, but decreased 
following glutamine treatment. Similar findings were reported 
by Becker (37), who noted an increase in anion superoxide pro-
duction following physical exercise in rats. In the present study, 
SOD activity increased by 325.38%, 111.86% and 360.96% 
after 24, 36, and 48 hours, respectively, in the TAA group, pos-
sibly in an attempt to compensate for the liver damage caused 
by the substance. Similar results were reported by Oliveira et 
al. (38), who studied the hepatotoxic effects of polychlorin-
ated biphenyls (PCB) in rats. SOD levels were lowest in gluta-
mine-treated animals at all assessment times (88%, 43% and 
66%), corroborating the findings obtained by Ren et al. (39). 
Although CAT activity was consistently lower in TAA-treated ani-
mals, it increased following glutamine administration, as has 
been previously reported in the literature (31,38,40,41). GPx 
activity was lowest in the TAA group after the first 24 hours of 
the experiment, but exhibited an increase after 36 and 48 hours. 

Figure 8. 

Comparative data between TBARS and histological damage (necrosis and inflammatory infiltrate) after (A) 24, (B) 36 and (C) 48 hours. Ne: Necrosis; IF: Inflammatory infiltrate. 
R = 0.7082, p < 0.05. 
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In TAA + G animals, however, the measurements taken after 36 
and 48 hours evidenced a decrease in GPx activity.

In animals injected with TAA, lipid peroxidation was caused 
by an increase in anion superoxide production, as evidenced by 
measures of SOD activity, which catalyzes the dismutation of 
superoxide into hydrogen peroxide and water. Although catalase 
degrades hydrogen peroxide, its activity was consistently low in 
TAA-treated animals, suggesting that, in this group, GPx may have 
been responsible for metabolizing ROS. Due to the toxic effects 
of TAA, GPx activity was still low at the 24-hour assessment, but 
increased at the 36 and 48-hour measurements, illustrating its 
hepatoprotective effects.

The present study confirmed the hepatotoxicity of TAA, as 
shown by its association with increased oxidative stress, elevated 
liver-associated enzymes, high levels of NF-κB and inflammatory 
cytokines, necrosis and inflammation. Glutamine appears to de-
crease oxidative stress and reduce the expression of inflammatory 
markers, making it a promising agent for reducing hepatocellular 
damage and treating liver toxicity.
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