Nutrición Hospitalaria 00235 / http://dx.doi.org/10.20960/nh.235
Resumen| PDF (ENGLISH)

Trabajo Original

Diet and liver apoptosis in rats: a particular metabolic pathway


Maria Emilia Lopes Monteiro, Analucia Rampazzo Xavier, Vilma Blondet Azeredo

Logo Descargas   Número de descargas: 4165      Logo Visitas   Número de visitas: 7773      Citas   Citas: 4

Compártelo:


Introduction: Various studies have indicated an association between modifi cation in dietary macronutrient composition and liver apoptosis.Objective: To explain how changes in metabolic pathways associated with a high-protein, high-fat, and low-carbohydrate diet causes liver apoptosis.Methods: Two groups of rats were compared. An experimental diet group (n = 8) using a high-protein (59.46%), high-fat (31.77%), and low-carbohydrate (8.77%) diet versus a control one (n = 9) with American Institute of Nutrition (AIN)-93-M diet. Animals were sacrificed after eight weeks, the adipose tissue weighed, the liver removed for flow cytometry analysis, and blood collected to measure glucose, insulin, glucagon, IL-6, TNF, triglycerides, malondialdehyde, and β-hydroxybutyrate. Statistical analysis was carried out using the unpaired and parametric Student’s t-test and Pearson’s correlation coeffi ents. Significance was set at p < 0.05.Results: Animals from the experimental group presented less adipose tissue than dose of the control group. Percentage of nonviable hepatocytes in the experimental group was 2.18 times larger than the control group (p = 0.001). No statistically significant differences were found in capillary glucose, insulin, glucagon, IL-6, or TNF-α between two groups. Plasmatic β-hydroxybutyrate and malondialdehyde of the experimental group expressed higher levels and triglycerides lower levels compared with the control group. The results show a positive and significant correlation between the percentage of nonviable hepatocytes and malondialdehyde levels (p = 0.0217) and a statistically significant negative correlation with triglycerides levels (p = 0.006).Conclusion: Results suggest that plasmatic malondialdehyde and triglyceride levels are probably good predictors of liver damage associated with an experimental low-carbohydrate diet in rats.

Palabras Clave: Apoptosis. Gluconeogenesis. Liver damage. Ketogenic diet. Nutrition.



de Souza, Vanessa Rosse, Lima, Thuane Passos Barbosa, Bedê, Teresa Palmiciano, Faria, Sabrina Baptista Alves, Alves, Renata, Louzada, Alana, de Moraes, Bianca Portugal Tavares, Silva, Adriana Ribeiro, Gonçalves de Albuquerque, Cassiano Felippe, de Azeredo, Vilma Blondet, Teodoro, Anderson Junger (2023) Murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.)) and Tapereba (Spondias mombin) Improve Hepatic and Inflammatory Biomarkers in High-Fat-Diet Rats. Foods
Xie, Yaying , Guo, Chunyan , Liu, Ye , Shi, Luanyuan , Yu, Jianshe (2019) Dexmedetomidine activates the PI3K/Akt pathway to inhibit hepatocyte apoptosis in rats with obstructive jaundice. Experimental and Therapeutic Medicine
Foulon, Mélanie, Robbe-Saule, Marie, Esnault, Lucille, Malloci, Marine, Mery, Anthony, Saint-André, Jean-Paul, Croue, Anne, Kempf, Marie, Homedan, Chadi, Marion, Estelle, Marsollier, Laurent (2021) Ketogenic Diet Impairment of Mycobacterium ulcerans Growth and Toxin Production and Enhancement of Host Response to Infection in an Experimental Mouse Model. The Journal of Infectious Diseases
Zhang W, Kudo H, Hawai K, Fujisaka S, Usui I, Sugiyama T, et al. Tumor necrosis factor-alpha accelerates apoptosis of steatotic hepatocytes from a murine model of non-alcoholic fatty liver disease. Biochem and Biophys Res Commun. 2010; 391: 1731-1736 [http://dx.doi.org/10.1016/j.bbrc.2009.12.144]
DOI: 10.1016/j.bbrc.2009.12.144
Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. Hepatocyte apoptosis and FAS expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003; 125: 437-443 [http://dx.doi.org/10.1016/S0016-5085 (03) 00907-7]
Chiang W-D, Shibu MA, Lee K-I, Wu J-P, Sai F-J, Pan L-F, et al. Lipolysis-stimulating peptide VHVV ameliorates high fat diet-induced hepatocyte apoptosis and fibrosis. J Funct Foods. 2014; 11: 482-492 [http://dx.doi.org/10.1016/j.jff.2014.08.003]
DOI: 10.1016/j.jff.2014.08.003
Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS ONE. 2013; 8: 1-8e54059 [
Rust C, Gores GJ. Apoptosis and liver diseases. Am J Med. 2000; 108: 567-574 [http://dx.doi.org/10.1016/S0002-9343(00)00370-3]
DOI: 10.1016/S0002-9343(00)00370-3
Afford S, Randhawa S. Demystified... Apoptosis. J. Clin Pathol: Mol Pathol 2000; 53: 55-63 [http://dx.doi.org/10.3390/ijms12107114]
DOI: 10.3390/ijms12107114
Bantel H, Ruck P, Gregor M, Schulze-Osthoff K. Detection of elevated caspase activation and early apoptosis in liver diseases. Eur J Cell Biol. 2001; 80: 230-239 [http://dx.doi.org/10.1078/0171-9335-00154]
DOI: 10.1078/0171-9335-00154
Reinartz A, Ehling J, Leue A, Liedtke C, Schneider U, Koptiz Z, et al. Lipid-induced up-regulation of human acyl-CoA 5 promotes hepatocellular apoptosis. Biochim Biophys Acta. 2010; 1801: 1025-1035 [http://dx.doi.org/10.1016/j.bbalip.2010.04.010]
DOI: 10.1016/j.bbalip.2010.04.010
de Almeida I, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo M. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr. 2002; 21: 219-223 [http://dx.doi.org/10.1054/clnu.2001.0529]
DOI: 10.1054/clnu.2001.0529
Valdecantos M, Prieto-Hontoria P, Pardo V, T. M, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Bio Med. 2015; 84: 263-278 [http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.019]
DOI: 10.1016/j.freeradbiomed.2015.03.019
Garbow JR, Doherty JM, Schugar RC, Travers S, Weber ML, Wentz AE, et al. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastr L. 2011; 300: G956-G67 [
Galloway CA, Yoon Y. Mitochondrial morphology in metabolic diseases. Antioxid Redox Signal. 2013; 19: 415-430 [
Turrens J. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552: 335-344 [
Esterbauer H, Schaur RJ, Zollner H. Chemistry and Biochemistry of 4-hydroxynonemal, malonaldehydes and related aldehydes. Free Radical Bio Med. 1991; 11: 81-128 [http://dx.doi.org/10.1016/0891-5849(91) 90192-6]
Browning J, Horton J. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004; 114: 147-152 [http://dx.doi.org/10.1172%2FJCI200422422]
Reeves PA. Purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of AIN-76 Rodent Diet. J. Nutr 1993; 123: 13-19 [PMID: 8229312]
He S, Atkinson C, Qiao F, Chen X, Tomlinson S. Ketamine-xylazine-acepromazine compared with isoflurane for anesthesia during liver transplantation in rodents. J Am Assoc Lab Anim Sci 2010; 49: 45-51 [PMCID: PMC2824967]
Klein S, Wolfe R. Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol. 1992; 262: E631-636 [http://www.ncbi.nlm.nih.gov/pubmed/1590373]
Pichon L, Huneau JF, Fromentin G, Tome D. A high-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats. J Nutr. 2006; 136: 1256-1260 [PMID: 16614413]
Westman E, Feinman R, Mavropoulos J, Vernon M, Volek J, Wortman J, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007; 86: 276-284 [PMID: 17684196]
Frigolet M, Barragán V, González M. Low carbohydrate diet. Love or hate? Ann Nutr Metab 2011; 58: 320–334 [
Azzout-Marniche D, Gaudichon C, Blouet C, Bos C, Mathé V, Huneau J-F, et al. Liver gluconeogenesis: A pathway to cope with postprandial amino acid excess in high-protein fed rats? Am J Physiol Regul Integr Comp Physiol 2007; 292: R1400-R1407 [
Blouet C, Mariotti F, Azzout-Marniche D, Bos C, Mathé V, Tomé D, et al. The reduced energy intake of rats fed a high-protein, low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr. 2006; 136: 1849-54 [PMID: 16772448]
Bielohuby M, Menhofer D, Kirchener H. Induction of ketosis in rats fed low-carbohydrate, high-fat diet depends on the relative abundance of dietary fat and protein. Am J Physiol Endocriniol Metab 2011; 300: E65-76 [
Bravata DM, Sanders L, Huang J, Krumholz HM, Olkin I, Gardner CD, et al. Efficacy and safety of low-carbohydrate diets: A systematic review. JAMA. 2003; 289: 1837-1850 [
Belobrajdic D, Mclntosh G, Owens J. A High-whey-protein diet reduces body weight gain and alters insulin sensitivity relative to red meat in Wistar rats. J Nutr. 2004; 134: 1454-1458 [PMID: 15173411]
Crovetti R, Porrini M, Santangelo A, Testolin G. The influence of thermic effect of food on satiety. Eur J Clin Nutr. 1998; 52: 482-488 [
Schmid H, Kettelhut IC, Migliorini RH. Reduced lipogenesis in rats fed a high protein, carbohydrate-free diet. Metabolism, 1984; 33: 219-223. [http://dx.doi.org/10.1016/0026-0495(84)90040-4]
DOI: 10.1016/0026-0495(84)90040-4
Caraballo SCG, Comhair TM, Dejong CHC, Lamers WH, Kohler SE. A high-protein diet is anti-steatotic and has no pro-inflammatory side effects in dyslipidemia APOE2 knock-in mice. Br J Nutr. 2014; 112: 1251-1265 [http://dx.doi.org/10.1017/S0007114514001986]
DOI: 10.1017/S0007114514001986
Botion LM, Kettelhut IC, Migliorini RH. Reduced lipogenesis in rats fed a high-protein, carbohydrate-free diet: participation of liver and for adipose depots. Braz J Med Biol Res. 1992; 25: 419-428 [PMID: 1342218]
Monteiro MELM, Xavier AR, Filho PJS, Oliveira FL, Azeredo VB. Apoptosis induced by a low-carbohydrate and high-protein diet in rat livers. World J Gastroentero. 2016; 22:1-8 [doi 10.3748/wjg.v22.i22.1]
Kennedy AR, Pissios P, Otu H, et al. A high fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab. 2007; 292: E1724-E1739 [
Schugar R, Crawford P. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012; 15: 374-380 [http://dx.doi.org/10.1097%2FMCO.0b013e3283547157]
Exton JH. Progress in endocrinology and metabolism. Metabolism. 1972; 21: 945-990 [http://dx.doi.org/10.1016/0026-0495(72)90028-5]
DOI: 10.1016/0026-0495(72)90028-5
Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT, et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J Proteome Res. 2011; 10: 722-731[
Hammond LE, Craig DA, He L, Rusyn I, Watkins SM, Doughman SD, Lemasters JJ, Coleman RA. Increased oxidative stress is associated with balanced increases in hepatocytes apoptosis and proliferation in glycerol-3 phosphate acyltransferase-1 deficient mice. Exp Mol Pathol. 2007; 82: 210-219 [
Oarada M, Tsuzuki T, Nikawa T, Kohno S, Hirasaka K, Gonoi T. Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice. Br J Nutr. 2012; 107: 1435-1444 [http://dx.doi.org/10.1017/S0007114511004521]
DOI: 10.1017/S0007114511004521
Ellenbroek JH, van Dijck L, Tons HA, Rabelink TJ, Carlotti F, Ballieux BEPB, Koning EJP. Long-term ketogenic diet causes intolerance and reduced β- and α-cell mass but no weight loss in mice. Am J Physiol Endocrinol Metab 2014; 306: E552-E558 [

Artículos más populares

Revisión: Ayuno intermitente: efectos en diversos escenarios clínicos

Introducción: los esquemas de ayuno intermitente (...

Publicado: 2023-05-24

Trabajo Original: Body mass index and risk of inflammatory breast disease: a Mendelian randomization study

Introduction: in previous studies, obesity was ide...

Publicado: 2023-04-22

Artículo Especial: Consenso del grupo de trabajo de los trastornos de la conducta alimentaria de SENPE (GTTCA-SENPE). Evaluación y tratamiento médico-nutricional en la anorexia nerviosa. Actualización 2023

La anorexia nerviosa (AN) es una enfermedad de ori...

Publicado: 2024-02-06

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.