Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 2017;15(1):131. https://doi.org/10.1186/s12916-017-0901-x
DOI: 10.1186/s12916-017-0901-x
Captieux M, Prigge R, Wild S, Guthrie B. Defining remission of type 2 diabetes in research studies: A systematic scoping review. PLoS Med 2020;17(10):e1003396. https://doi.org/10.1371/journal.pmed.1003396
DOI: 10.1371/journal.pmed.1003396
Valaiyapathi B, Gower B, Ashraf AP. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr Diabetes Rev 2020;16(3):220-229. https://doi.org/10.2174/1573399814666180608074510
DOI: 10.2174/1573399814666180608074510
Melmer A, Laimer M. Treatment Goals in Diabetes. Endocr Dev 2016;31:1–27. https://doi.org/10.1159/000439364
DOI: 10.1159/000439364
Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 2020;25(8):1987. https://doi.org/10.3390/molecules25081987
DOI: 10.3390/molecules25081987
Qaseem A, Barry M J, Humphrey L L, Forciea M A, Clinical Guidelines Committee of the American College of Physicians. Oral Pharmacologic Treatment of Type 2 Diabetes Mellitus: A Clinical Practice Guideline Update From the American College of Physicians. Ann Intern Med 2017;166:279–290. https://doi.org/10.7326/M16-1860
DOI: 10.7326/M16-1860
Xu L, Zhao W, Wang D,Ma X. Chinese Medicine in the Battle Against Obesity and Metabolic Diseases. Front Physiol 2018;9:850. https://doi.org/10.3389/fphys.2018.00850
DOI: 10.3389/fphys.2018.00850
Liu R, Li X, Huang N, Fan M, Sun R. Toxicity of traditional Chinese medicine herbal and mineral products. Adv Pharmacol 2020;87:301-346. https://doi.org/10.1016/bs.apha.2019.08.001
DOI: 10.1016/bs.apha.2019.08.001
Yang M, Chen JL, Xu LW, Ji G. Navigating traditional chinese medicine network pharmacology and computational tools. Evid Based Complement Alternat Med 2013;2013:731969. https://doi.org/10.1155/2013/731969
DOI: 10.1155/2013/731969
Guo R, Luo X, Liu J, Liu L, Wang X, Lu H. Omics strategies decipher therapeutic discoveries of traditional Chinese medicine against different diseases at multiple layers molecular-level. Pharmacol Res 2020; 152:104627. https://doi.org/10.1016/j.phrs.2020.104627
DOI: 10.1016/j.phrs.2020.104627
Zhao XQ, Guo S, Lu YY, Hua Y, Zhang F, Yan H, et al. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed Pharmacother 2020;121:109559. https://doi.org/10.1016/j.biopha.2019.109559
DOI: 10.1016/j.biopha.2019.109559
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018;19(11):3634. https://doi.org/10.3390/ijms19113634
DOI: 10.3390/ijms19113634
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D,.et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLOS One 2017;12(6):1-19. https://doi.org/10.1371/journal.pone.0180476
DOI: 10.1371/journal.pone.0180476
Li Z, Mei J, Jiang L, Geng C, Li Q, Yao X, et al. Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes) Polysaccharides Suppress Tacrine-induced Apoptosis by ROS-scavenging and Mitochondrial Pathway in HepG2 Cells. Int J Med Mushrooms 2019;21(6):583–593. https://doi.org/10.1615/IntJMedMushrooms.2019030857
DOI: 10.1615/IntJMedMushrooms.2019030857
Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother 2017;95:1669–1677. https://doi.org/10.1016/j.biopha.2017.09.104
DOI: 10.1016/j.biopha.2017.09.104
Diao BZ, Jin WR, Yu XJ. Protective Effect of Polysaccharides from Inonotus obliquus on Streptozotocin-Induced Diabetic Symptoms and Their Potential Mechanisms in Rats. EVID-BASED COMPL ALT 2014;841496. https://doi.org/10.1155/2014/841496
DOI: 10.1155/2014/841496
Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol 2018;34(5):575-584. https://doi.org/10.1016/j.cjca.2017.12.005
DOI: 10.1016/j.cjca.2017.12.005
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. Int J Environ Res Public Health 2021;18(2):716. https://doi.org/10.3390/ijerph18020716
DOI: 10.3390/ijerph18020716
Borse SP, Chhipa AS, Sharma V, Singh DP, Nivsarkar M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med Princ Pract 2021;30(2):109-121. https://doi.org/10.1159/000511002
DOI: 10.1159/000511002
Chung IM, Kim H, Yeo MA, Kim SJ, Seo MC, Moon HI. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res Int 2011;44(1):127-132. https://doi.org/10.1016/j.foodres.2010.10.051
DOI: 10.1016/j.foodres.2010.10.051
Gomes MB, Rathmann W, Charbonnel B, Khunti K, Kosiborod M, Nicolucci A, et al. Treatment of type 2 diabetes mellitus worldwide: Baseline patient characteristics in the global DISCOVER study. Diabetes Res Clin Pract 2019; 151: 20–32. https://doi.org/10.1016/j.diabres.2019.03.024
DOI: 10.1016/j.diabres.2019.03.024
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018;98(4):2133-2223. https://doi.org/10.1152/physrev.00063.2017
DOI: 10.1152/physrev.00063.2017
Rachdaoui N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int J Mol Sci 2020;21(5):1770. https://doi.org/10.3390/ijms21051770
DOI: 10.3390/ijms21051770
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019;129(10):4001-4008. https://doi.org/10.1172/JCI129188
DOI: 10.1172/JCI129188
Mehta RK, Koirala P, Mallick RL, Parajuli S, Jha R. Dyslipidemia in Patients with Type 2 Diabetes Mellitus in a Tertiary Care Centre: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc 2021;59(236):305-309. https://doi.org/10.31729/jnma.6278
DOI: 10.31729/jnma.6278
Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella foenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J Diabetes Res 2019;2019:8507453. https://doi.org/10.1155/2019/8507453
DOI: 10.1155/2019/8507453
Aguilar-Ballester M, Hurtado-Genovés G, Taberner-Cortés A, Herrero-Cervera A, Martínez-Hervás S, González-Navarro H. Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021;22(2):660. https://doi.org/10.3390/ijms22020660
DOI: 10.3390/ijms22020660
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020;21(17):6275. https://doi.org/10.3390/ijms21176275
DOI: 10.3390/ijms21176275
Moin ASM, Butler AE. Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Curr Diab Rep 2019;19(9):83. https://doi.org/10.1007/s11892-019-1194-6
DOI: 10.1007/s11892-019-1194-6
Shepard BD. Sex differences in diabetes and kidney disease: mechanisms and consequences. Am J Physiol Renal Physiol 2019;317(2):F456-F462. https://doi.org/10.1152/ajprenal.00249.2019
DOI: 10.1152/ajprenal.00249.2019
Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 2017;13(10):572-587. https://doi.org/10.1038/nrendo.2017.80
DOI: 10.1038/nrendo.2017.80
Szychowski KA, Skóra B, Pomianek T, Gmiński J. Inonotus obliquus - from folk medicine to clinical use. J Tradit Complement Med 2020;11(4):293-302. https://doi.org/10.1016/j.jtcme.2020.08.003
DOI: 10.1016/j.jtcme.2020.08.003
Wang J, Wang C, Li S, Li W, Yuan J, Pan Y, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother 2017;95:1669-1677. https://doi.org/10.1016/j.biopha.2017.09.104
DOI: 10.1016/j.biopha.2017.09.104
Liu P, Xue J, Tong S, Dong W, Wu P. Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus. Molecules 2018;23(8):1948. https://doi.org/10.3390/molecules23081948
DOI: 10.3390/molecules23081948
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 2017;12(6):e0180476. https://doi.org/10.1371/journal.pone.0180476
DOI: 10.1371/journal.pone.0180476