Nutrición Hospitalaria 05938 / http://dx.doi.org/10.20960/nh.05938
Resumen| PDF (ENGLISH)

Trabajo Original

Associations of serum vitamins, carotenoids, and retinyl esters with risk of hip and spine fractures


Yifan Lu, Zhuo Yang, Jianhui Duan, Wangyang Li, Wei Tan, Ying Li, Qunfei Xiao, Zhi Tang, Hui Xiong

Prepublicado: 2025-09-18

Logo Descargas   Número de descargas: 0      Logo Visitas   Número de visitas: 1      Citas   Citas: 0

Compártelo:


Background: most existing studies have explored the association between the intake of vitamins, carotenoids, and retinyl esters and fracture risk based on dietary questionnaires. However, these studies often involve small sample sizes and show considerable heterogeneity in results both across and within populations. To date, there is a lack of research systematically evaluating the relationships between serum concentrations of vitamins, carotenoids, and retinyl esters and the risks of hip and vertebral fractures. This study aimed to investigate these associations. Methods: using data from the National Health and Nutrition Examination Survey (NHANES), we employed multivariable logistic regression models to assess the associations between serum levels of vitamins, carotenoids, and retinyl esters and the risk of hip and vertebral fractures. Nonlinear relationships were explored using smooth curve fitting and two-piecewise linear regression models. Subgroup analyses were conducted to identify potential effect modifiers. The predictive performance of significant biomarkers was evaluated using receiver operating characteristic (ROC) curves. Mediation analysis was further performed to explore the mediating role of bone mineral density (BMD) in these associations. Results: serum levels of α-carotene, β-cryptoxanthin, vitamin E, and trans-lycopene were inversely associated with the risk of hip fractures. α-Carotene and lutein-zeaxanthin showed marginal associations with vertebral fracture risk. Nonlinear analyses suggested protective effects of α-carotene and β-cryptoxanthin at lower concentration ranges. ROC curve analysis indicated that serum α-carotene could serve as a potential independent predictor of hip fracture risk. Mediation analysis revealed that BMD at the intertrochanter and trochanter regions partially mediated the associations between α-carotene, β-cryptoxanthin, and hip fracture risk. Conclusion: this study is the first to confirm, based on serum biomarkers, the inverse associations of α-carotene and β-cryptoxanthin with fracture risk, and to report the relationship between trans-lycopene and hip fracture risk. α-Carotene and β-cryptoxanthin demonstrated protective effects at lower serum levels, partially mediated through BMD, and serum α-carotene may serve as a potential independent biomarker for predicting hip fracture risk.

Palabras Clave: Serum α-carotene. Serum β-cryptoxanthin. Trans-lycopene. Hip fracture risk. Mediation analysis.



Parker M, Johansen A. Hip fracture. BMJ 2006;333(7557):27-30.
DOI: 10.1136/bmj.333.7557.27
Veronese N, Maggi S. Epidemiology and social costs of hip fracture. Injury 2018;49:1458-60.
DOI: 10.1016/j.injury.2018.04.015
McCarthy J, Davis A. Diagnosis and Management of Vertebral Compression Fractures. Am Fam Physician 2016;94:44-50.
Hsu W, Zhang X, Sing CW, Tan K, Wong IC, Lau W, et al. Unveiling unique clinical phenotypes of hip fracture patients and the temporal association with cardiovascular events. Nat Commun 2024;15:4353.
DOI: 10.1038/s41467-024-48713-3
Taylor NF, Rimayanti MU, Peiris CL, Snowdon DA, Harding KE, Semciw AI, et al. Hip fracture has profound psychosocial impacts: a systematic review of qualitative studies. Age Ageing 2024;53:afae194.
DOI: 10.1093/ageing/afae194
Dyer SM, Crotty M, Fairhall N, Magaziner J, Beaupre LA, Cameron ID, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr 2016;16:158.
DOI: 10.1186/s12877-016-0332-0
Haleem S, Choudri MJ, Kainth GS, Parker MJ. Mortality following hip fracture: Trends and geographical variations over the last SIXTY years. Injury 2023;54:620-9.
DOI: 10.1016/j.injury.2022.12.008
Vestergaard P, Rejnmark L, Mosekilde L. Hip fracture prevention: cost-effective strategies. Pharmacoeconomics 2001;19:449-68.
DOI: 10.2165/00019053-200119050-00002
Pan RJ, Gui SJ, Wang T, Nian F, Wang AY, Liu CJ, et al. Comparative effectiveness of different exercise interventions for elderly patients with hip fracture: A systematic review and Bayesian network meta-analysis protocol of randomized controlled trials. PLoS One 2023;18:e0288473.
DOI: 10.1371/journal.pone.0288473
Cadel L, Kuluski K, Wodchis WP, Thavorn K, Guilcher S. Rehabilitation interventions for persons with hip fracture and cognitive impairment: A scoping review. PLoS One 2022;17:e0273038.
DOI: 10.1371/journal.pone.0273038
Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol 2021;9:606-21.
DOI: 10.1016/S2213-8587(21)00119-4
Violi F, Nocella C, Loffredo L, Carnevale R, Pignatelli P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med 2022;178:26-41.
DOI: 10.1016/j.freeradbiomed.2021.11.027
Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 2010;131:276-86.
DOI: 10.1016/j.mad.2010.03.005
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022;156:111175.
DOI: 10.1016/j.foodres.2022.111175
Abraham A, Kattoor AJ, Saldeen T, Mehta JL. Vitamin E and its anticancer effects. Crit Rev Food Sci Nutr 2019;59:2831-8.
DOI: 10.1080/10408398.2018.1474169
Galland L. Diet and inflammation. Nutr Clin Pract 2010;25:634-40.
DOI: 10.1177/0884533610385703
Snodgrass SR. Vitamin neurotoxicity. Mol Neurobiol 1992;6:41-73.
DOI: 10.1007/BF02935566
Silva C, Fung A, Masson V, Assen K, Ward V, McKenzie J, et al. Vitamin D Toxicity from an Unusual and Unexpected Source: A Report of 2 Cases. Horm Res Paediatr 2023;96:332-40.
DOI: 10.1159/000526755
Kim SJ, Anh NH, Diem NC, Park S, Cho YH, Long NP, et al. Effects of β-Cryptoxanthin on Improvement in Osteoporosis Risk: A Systematic Review and Meta-Analysis of Observational Studies. Foods 2021;10:296.
DOI: 10.3390/foods10020296
Cao WT, Zeng FF, Li BL, Lin JS, Liang YY, Chen YM. Higher dietary carotenoid intake associated with lower risk of hip fracture in middle-aged and elderly Chinese: A matched case-control study. Bone 2018;111:116-22.
Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP. Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res 2014;29:408-17.
DOI: 10.1002/jbmr.2041
Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 2009;24:1086-94.
DOI: 10.1359/jbmr.090102
Hayhoe R, Lentjes M, Mulligan AA, Luben RN, Khaw KT, Welch AA. Carotenoid dietary intakes and plasma concentrations are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Br J Nutr 2017;117:1439-53.
DOI: 10.1017/S0007114517001180
Blumberg JB, Frei B, Fulgoni VL I, Weaver CM, Zeisel SH. Contribution of Dietary Supplements to Nutritional Adequacy in Race/Ethnic Population Subgroups in the United States. Nutrients 2017;9:1295.
DOI: 10.3390/nu9121295
Yee MM, Chin KY, Ima-Nirwana S, Alias E, Chua KH, Wong SK. Evaluation of bone-protecting effects of palm carotene mixture in two- and three-dimensional osteoblast/osteoclast co-culture systems. Int J Med Sci 2025;22:585-603.
DOI: 10.7150/ijms.103445
Praud C, Al Ahmadieh S, Voldoire E, Le Vern Y, Godet E, Couroussé N, et al. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production. Exp Cell Res 2017;358:140-6.
DOI: 10.1016/j.yexcr.2017.06.011
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2011;286:6542-53.
DOI: 10.1074/jbc.M110.198382
Bi W, Liu Y, Guo J, Lin Z, Liu J, Zhou M, et al. All-trans retinoic-acid inhibits heterodimeric bone morphogenetic protein 2/7-stimulated osteoclastogenesis, and resorption activity. Cell Biosci 2018;8:48.
DOI: 10.1186/s13578-018-0246-y
Yee M, Chin KY, Ima-Nirwana S, Wong SK. Vitamin A and Bone Health: A Review on Current Evidence. Molecules 2021;26:1757.
DOI: 10.3390/molecules26061757
Zhao Z, Chen J, Ci F, Pang H, Cheng N, Xing A. α-Carotene: a valuable carotenoid in biological and medical research. J Sci Food Agric 2022;102:5606-17.
DOI: 10.1002/jsfa.11966
Burri BJ, La Frano MR, Zhu C. Absorption, metabolism, and functions of β-cryptoxanthin. Nutr Rev 2016;74:69-82.
DOI: 10.1093/nutrit/nuv064
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022;21:964-98.
DOI: 10.1111/1541-4337.12924
Muñoz P, Munné-Bosch S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci 2019;24:1040-51.
DOI: 10.1016/j.tplants.2019.08.006
Singh P, Goyal GK. Dietary Lycopene: Its Properties and Anticarcinogenic Effects. Compr Rev Food Sci Food Saf 2008;7:255-70.
DOI: 10.1111/j.1541-4337.2008.00044.x
Tanaka Y, Tominari T, Takatoya M, Arai D, Sugasaki M, Ichimaru R, et al. Lutein Maintains Bone Mass In Vitro and In Vivo Against Disuse-Induced Bone Loss in Hindlimb-Unloaded Mice. Nutrients 2024;16(24):4271.
DOI: 10.3390/nu16244271
Jiang M, Li G, Yang K, Tao L. Role of vitamins in the development and treatment of osteoporosis (Review). Int J Mol Med 2025;56(1):109.
DOI: 10.3892/ijmm.2025.5550

Artículos Relacionados:

Artículo Especial: The use of moderated mediated analysis to study the influence of hypo-hydration on working memory

Hayley A. Young , David Benton

Publicado: 2016-07-07 / http://dx.doi.org/10.20960/nh.320

Trabajo Original: Food intake influences the incidence of cardiovascular disease by driving cardiac remodeling — Evidence from a Mendelian randomization

Bingfu Wang , Yulong Song , Yujian Fan , Zhiqiang Zhao

Publicado: 2024-10-26 / http://dx.doi.org/10.20960/nh.05588

Artículos más populares

Revisión: Inteligencia artificial generativa ChatGPT en nutrición clínica: avances y desafíos

ChatGPT y otras herramientas de inteligencia artif...

Publicado: 2024-12-31

Trabajo Original: Nutrient imbalance and obesity in children with autism spectrum disorder

Introduction: children with ASD have a higher perc...

Publicado: 2024-07-14

Revisión: Suplementación con micronutrientes y sus beneficios: ¿por qué y cuándo?

Introducción: los micronutrientes participan en la...

Publicado: 2025-07-18

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.