Nutrición Hospitalaria 04163 / http://dx.doi.org/10.20960/nh.04163
Resumen| PDF

Trabajo Original

Antigenotoxicidad de la isoflavona de soya genisteína en ratones expuestos a compuestos cancerígenos del cromo hexavalente


María del Carmen García-Rodríguez, Gabriela Abigail Valle-Castillo, Lourdes Montserrat Hernández-Cortés

Prepublicado: 2022-09-21
Publicado: 2023-02-07

Logo Descargas   Número de descargas: 116      Logo Visitas   Número de visitas: 1624      Citas   Citas: 0

Compártelo:


Introducción: el consumo de alimentos ricos en antioxidantes como las isoflavonas de la soya puede ser una alternativa en la protección y modulación de la genotoxicidad de metales con potencial cancerígeno asociado al estrés oxidativo. Objetivo: evaluar el efecto antigenotóxico de la isoflavona de soya genisteína en ratones expuestos a compuestos cancerígenos de cromo hexavalente (Cr[VI]). Material y método: veinticinco ratones Hsd:ICR macho fueron divididos en cinco grupos tratados de la siguiente forma: a) vehículo 1 (agua destilada estéril, vía-oral); b) vehículo 2 (aceite de maíz para compuestos liposolubles, vía-intraperitoneal); c) 15 mg/kg de genisteína, vía-oral; d) 20 mg/kg de CrO3 vía-intraperitoneal; y e) 15 mg/kg de genisteína cuatro horas antes de la aplicación de 20 mg/kg de CrO3. Se realizaron evaluaciones de micronúcleos (MN), apoptosis, relación de eritrocitos policromáticos/normocromáticos (EPC/ENC) y viabilidad celular en sangre periférica obtenida a las 0, 24, 48 y 72 horas. Resultados: el tratamiento con genisteína redujo los MN cuando fue administrada previamente al tratamiento con CrO3, siendo mayor el efecto a las 48 horas (reducción del 84 %). La viabilidad celular se redujo con los tratamientos de genisteína y CrO3 solos, siendo mayor el efecto en este último. Conclusiones: la genisteína bloqueó eficazmente la acción genotóxica del CrO3. El hecho de que se redujeran los MN y la apoptosis en el grupo tratado con la genisteína y el CrO3 sugiere que la genisteína pudo haber inhibido el daño oxidativo del Cr(VI) ya que, al no haber células con daño, las vías apoptóticas no se activaron.

Palabras Clave: Genisteína. Antigenotóxico. Cr(VI). Glycine max. Apoptosis. Isoflavonas.



González CN, Durán AS. Isoflavonas de soya y evidencias sobre la protección cardiovascular. Nutr Hosp. 2014;29(6):1271-82.
Kim I-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021;10(7):1064.
DOI: 10.3390/antiox10071064
Szeja W, Grynkiewicz G, Rusin, A. Isoflavones, their glycosides and glycoconjugates. Synthesis and biological activity. Curr Org Chem 2017;21(3):218-35.
DOI: 10.2174/1385272820666160928120822
Shehata EMM, Yosra ESR, Saly G, Ossama YA. Self-emulsifying phospholipid pre-concentrates (SEPPs) for improved oral delivery of the anticancer genistein: Development, appraisal and ex-vivo intestinal permeation. Int J Pharm 2016;511(2):745-56.
DOI: 10.1016/j.ijpharm.2016.07.078
Pabich M, Materska M. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients 2019;11(7):1660.
DOI: 10.3390/nu11071660
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, et al. Molecular mechanisms of action of genistein in cancer: recent advances. Front Pharmacol 2019;10:1336.
DOI: 10.3389/fphar.2019.01336
Vitale DC, Piazza C, Melilli B, Drago F, Salomone S. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 2013;38(1):15-25.
DOI: 10.1007/s13318-012-0112-y
Rahman M, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in vivo and in vitro: A review. Biomed Pharmacother 2016;82(1):379-92.
DOI: 10.1016/j.biopha.2016.05.023
Setchell KD, Brzezinski A, Brown NM, Desai PB, Melhem M, Meredith T. Pharmacokinetics of a slow-release formulation of soybean isoflavones in healthy postmenopausal women. J Agric Food Chem 2005; 53(1):1938-44.
DOI: 10.1021/jf0488099
CDPC Chromium Draft for Public Comment U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry Comment Period Ends: February 18, 1992. https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
IARC, International Agency for Research on Cancer. Chromium, nickel and welding: summary of data reported and evaluation. Monographs on the evaluation of carcinogenic risks to humans, WHO 1990 49: pp. 257. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chromium-Nickel-And-Welding-1990
O’Brien TJ, Ceryak S, Patierno SR. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 2003; 533(1-2):3-36.
DOI: 10.1016/j.mrfmmm.2003.09.006
García-Rodríguez MC, Altamirano-Lozano M, Gordillo-García A. The role of green tea polyphenols in the protection from hexavalent chromium-induced genotoxic damage. In Janica Wong, editor. Polyphenols. London: IntechOpen; 2018.
DOI: 10.5772/intechopen.76651
García-Rodríguez MC, López-Santiago V, Altamirano-Lozano MA. Effect of chlorophyllin on chromium trioxide-induced micronuclei in polychromatic erythrocytes in mouse peripheral blood. Mutat Res 2001;496:145-51.
DOI: 10.1016/S1383-5718(01)00225-X
García-Rodríguez MC, Carvente-Juárez MM, Altamirano-Lozano MA. Antigenotoxic and apoptotic activity of green tea polyphenol extracts on hexavalent chromium-induced DNA damage in peripheral blood of CD-1 mice: analysis with differential acridine orange/ethidium bromide staining. Oxid Med Cell Longev 2013;2013:486419.
DOI: 10.1155/2013/486419
OECD. Test No. 474: Mammalian Erythrocyte Micronucleus Test, OECD guidelines for the testing of chemicals, Section 4, OECD, 2016; Publishing, Paris.
Pugalendhi P, Manoharan S, Panjamurthy K, Balakrishnan S, Nirmal M. Antigenotoxic effect of genistein against 7,12-dimethylbenz[a]anthracene induced genotoxicity in bone marrow cells of female wistar rats. Pharmacol Rep 2009;61(1):296-303.
DOI: 10.1016/S1734-1140(09)70035-0
de Jesus LCL, Soares R-EP, Moreira VR, Pontes RL, Castelo-Branco PV, Pereira SRF. Genistein and ascorbic acid reduce oxidative stress-derived DNA damage induced by the antileishmanial meglumine antimoniate. Antimicrob Agents Chemother 2018;62(9):e00456-18.
DOI: 10.1128/AAC.00456-18
EPA. Environmental Protection Agency. Health Effects Test Guidelines OPPTS 870.5395. Mammalian erythrocyte micronucleus test, office of prevention, pesticides and toxic substances (7101). US. 1998. EPA 712-C-98-226. https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0156-0032.
Hayashi M, Morita T, Kodama Y, Sofuni T, Ishidate MJr. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res 1990;245:245-49.
DOI: 10.1016/0165-7992(90)90153-B
Shi XL, Dalal NS. The role of superoxide radical in Chromium(VI)-generated hydroxyl radical: The Cr (VI) Haber-Weiss cycle. Arch Biochem Biophys 1992;292(1):323-27.
DOI: 10.1016/0003-9861(92)90085-B
Ali F, Rahul Naz F, Jyoti S, Siddique YH. Protective effect of genistein against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in Swiss albino rats. J Pharm Anal 2015;5(1):51-7.
DOI: 10.1016/j.jpha.2014.07.003
Raschke M, Rowland IR, Magee PJ. Genistein protects prostrate cells against hydrogenperoxide induced DNA damage and induces expression of genes involved in the defense against oxidative stress. Carcinogenesis 2006;27(1):2322-30.
DOI: 10.1093/carcin/bgl082
Marahmadi SMS, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, et al. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Citokine 2018;104(1):151-9.
DOI: 10.1016/j.cyto.2017.10.008
Gong DK, Liu BH, Tan XH. Genistein prevents cadmium-induced neurotoxic effects through its antioxidant mechanisms. Drug Res (Stuttg) 2015;65(2):65-9.
Bhamre S, Sahoo D, Tibshirani R, Brooks JD. Gene expression changes induced by genistein in the prostate cancer cell line LNCaP. Open Prostate Cancer J 2010;3:86-98.
DOI: 10.2174/1876822901003010086
Song L, Ma L, Cong F, Shen X, Jing P, Ying X, et al. Radioprotective effect of genistein on HL-7702 cell via the inhibition of apoptosis and DNA damage. Cancer Lett. 2015;28;366(1):100-11.
DOI: 10.1016/j.canlet.2015.06.008
Zhang Z, Wang CZ, Du GJ, Qi LW, Calway T, He TC et al. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol. 2013;43(1):289-96.
DOI: 10.3892/ijo.2013.1946
Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, et al. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity - A review. Chemosphere. 2021; 271:129735.
DOI: 10.1016/j.chemosphere.2021.129735
Hayashi Y, Kondo T, Zhao QL, Ogawa R, Cui ZG, Feril LB Jr, et al. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells. Toxicol Appl Pharmacol. 2004;197(2):96-106.
DOI: 10.1016/j.taap.2004.02.011
Zhu J, Zhang C, Qing Y, Cheng Y, Jiang X, Li M, Yang Z, Wang D. Genistein induces apoptosis by stabilizing intracellular p53 protein through an APE1-mediated pathway. Free Radic Biol Med. 2015;86:209-18.
DOI: 10.1016/j.freeradbiomed.2015.05.030
Subbiah U, Raghunathan M. Chemoprotective action of resvertrol and genistein from apoptosis induced in human peripheral blood lymphocytes. J Biomol Struct 2008;25(4):425-34.
DOI: 10.1080/07391102.2008.10507191
Record IR, Jannes M, Dreosti IE, King RA. Induction of micronucleus formation in mouse splenocytes by the soy isoflavone genistein in vitro but not in vivo. Food Chem Toxicol 1995;33(1): 919-22.
DOI: 10.1016/0278-6915(95)00062-7
Adlercreutz H, Fotsis T, Lampe J. Quantitative determination of lignans and isoflavonoids in plasma of omnivorous and vegetarian women by isotope dilution gas chromatography mass spectrometry. Scand J Clin Lab 1993;53(1):5-18.
DOI: 10.3109/00365519309090693
Atefeh N, Raimo P. In vitro estrogenic, cytotoxic and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine. Environ Sci Pollut Res 2021;28:27988-97.
DOI: 10.1007/s11356-021-12629-y
Castillo WO, Palomino NV, Takahashi CS, Giuliatti S. Genistein and galantamine combinations decrease β-amyloid peptide (1-42)-induced genotoxicity and cell death in SH-SY5Y cell line: an in vitro and in silico approach for mimic of Alzheimer's disease. Neurotox Res 2020;38(3):691-706.
DOI: 10.1007/s12640-020-00243-8
Schroeter A, Aichinger G, Stornig K, Marko D. Impact of oxidative metabolism on the cytotoxic and genotoxic potential of genistein in human colon cancer cells. Mol Nutr Food Res 2019;63(2):e1800635.
DOI: 10.1002/mnfr.201800635
Klein CB, King AA. Genistein genotoxicity: critical considerations of in vitro exposure dose. Toxicol Appl Pharmacol. 2007;224(1):1-11.
DOI: 10.1016/j.taap.2007.06.022
Virgilio A, Iwami K, Wätjem W, Kahl R, Degen G. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett 2004;151(1):151-62.
DOI: 10.1016/j.toxlet.2004.04.005
Das A, Banik N, Ray S. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 2006;119(11):2575-85.
DOI: 10.1002/ijc.22228

Artículos Relacionados:

Trabajo Original: Protection by polyphenol extract from olive stones against apoptosis produced by oxidative stress in human neuroblastoma cells

Ernesto Cortés-Castell , Carmen Veciana-galindo , Luis Torró-montell , Antonio Palazón-Bru , Elia Sirvent-Segura , Vicente Gil-guillén , Mercedes Rizo-baeza

Publicado: 2016-02-17 / http://dx.doi.org/10.20960/nh.39

Trabajo Original: Diet and liver apoptosis in rats: a particular metabolic pathway

Maria Emilia Lopes Monteiro , Analucia Rampazzo Xavier , Vilma Blondet Azeredo

Publicado: 2016-06-23 / http://dx.doi.org/10.20960/nh.235

Trabajo Original: Altered membrane lipid dynamics and chemoprevention by non-steroidal anti inflammatory drugs during colon carcinogenesis

Publicado: 2021-06-30 / http://dx.doi.org/

Trabajo Original: El té verde en la quimioprevención in vivo del daño genotóxico inducido por metales cancerígenos (cromo [VI])

Publicado: 2021-09-29 / http://dx.doi.org/

Revisión: Antitumor effect of oleic acid; mechanisms of action. A review

Publicado: 2021-10-05 / http://dx.doi.org/

Trabajo Original: Nori- and Sea spaghetti- but not Wakame-restructured pork decrease the hypercholesterolemic and liver proapototic short-term effects of high-dietary cholesterol consumption

Publicado: 2021-10-27 / http://dx.doi.org/

Revisión: Isoflavonas de soya y evidencias sobre la protección cardiovascular

Publicado: 2021-11-03 / http://dx.doi.org/

Trabajo Original: Dietary ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy affect hippocampal neurogenesis and apoptosis in mouse offspring

Publicado: 2022-01-13 / http://dx.doi.org/

Trabajo Original: Efecto in vivo del vino tinto sin diluir, diluido (75%) y sin alcohol sobre el daño genotóxico inducido por metales pesados con potencial cancerígeno: cromo [VI]

Publicado: 2022-01-19 / http://dx.doi.org/

Revisión: Bebidas de soja y salud femenina. Revisión de la evidencia y opinión de expertos

René Bailón-Uriza , José Antonio Ayala-Méndez , Cuauhtémoc Celis-González , Jesús Chávez-Brambila , Imelda Hernández Marín , Juan de Dios Maldonado-Alvarado , Javier Montoya-Cossío , Fernanda Molina-Segui , Abraham May-Hau , Pilar Riobó Serván , Eduardo Neri-Ruz , Antonio Peralta-Sánchez , Eduardo Reyes , Roger Rosado-López , Martin Tulio Santa Rita-Escamilla , Gilberto Tena Alavez , Hugo Laviada Molina

Publicado: 2022-07-25 / http://dx.doi.org/10.20960/nh.04372

Artículos más populares

Revisión: Ayuno intermitente: efectos en diversos escenarios clínicos

Introducción: los esquemas de ayuno intermitente (...

Publicado: 2023-05-24

Trabajo Original: Body mass index and risk of inflammatory breast disease: a Mendelian randomization study

Introduction: in previous studies, obesity was ide...

Publicado: 2023-04-22

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.