Nutrición Hospitalaria 04555 / http://dx.doi.org/10.20960/nh.04555
Resumen| PDF (ENGLISH)

Revisión

Autophagy, a relevant process for metabolic health and type-2 diabetes


Adrián Macho González, José Manuel Martínez Sesmero, Francisco J. Sánchez-Muniz

Prepublicado: 2023-03-16
Publicado: 2023-04-10

Logo Descargas   Número de descargas: 193      Logo Visitas   Número de visitas: 3078      Citas   Citas: 0

Compártelo:


Autophagy is a very active process that plays an important role in cell and organ differentiation and remodelling, being a crucial system to guarantee health. This physiological process is activated in starvation and inhibited in the presence of nutrients. This short review comments on the three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy, as well as different aspects that control autophagy and its relationship with health and degenerative diseases. As autophagy is highly dependent on functional autophagy (ATG) proteins integrating the phagophore, the role of some key ATG genes and epigenes are briefly commented on. The manuscript deepens discussing some central aspects of type-2 diabetes mellitus and their relationship with the cell cleaning process and mitochondria homeostasis maintenance, as well as the mechanisms through which antidiabetic drugs affect autophagy. Well-designed studies are needed to elucidate whether autophagy plays a casual or causal role in T2DM.

Palabras Clave: Autophagy. Types. ATG genes. Degenerative diseases. Type-2 diabetes. Antidiabetic drugs.



Harnett MM, Pineda MA, Latré de Laté P, et al. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J 2017;0(1): 9-22.
DOI: 10.1016/j.bj.2016.12.004
Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004;4(2): 70-7.
DOI: 10.1016/j.tcb.2003.12.002
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2022; 18(3): 473–95.
DOI: 10.1080/15548627.2021.1936359
Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 365-381.
DOI: 10.1038/s41580-018-0001-6
Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology 2016;150(2):328-339.
DOI: 10.1053/j.gastro.2015.09.042
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8(11): 931-7.
DOI: 10.1038/nrm2245
Krause GJ, Diaz A, Jafari M, Khawaja RR, et al. Reduced endosomal microautophagy activity in aging associates with enhanced exocyst-mediated protein secretion. Aging Cell 2022; 18: e13713.
DOI: 10.1111/acel.13713
Reggiori F, Ungermann C. Autophagosome maturation and fusion. J Mol Biol, 2017; 429: 486-496.
DOI: 10.1016/j.jmb.2017.01.002
Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci, 2017; 40: 151-166.
DOI: 10.1016/j.tins.2017.01.002
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36: 585-95.
DOI: 10.1038/ng1362
Singh R. Autophagy in the control of food intake. Adipocyte 2012; 1(2): 75-9.
DOI: 10.4161/adip.18966
Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res Rev, 2013; 12(1): 237-52.
DOI: 10.1016/j.arr.2012.03.008
Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 2010; 501(1): 79-90.
DOI: 10.1016/j.abb.2010.05.003
Frati G, Vecchione C, Sciarretta S. Novel beneficial cardiovascular effects of natural activators of autophagy. Circ Res 2018; 123(8): 947-9.
DOI: 10.1161/CIRCRESAHA.118.313530
Bourdenx M, Martín-Segura A, Scrivo A, Rodriguez-Navarro JA, Kaushik S, Tasset I, Diaz A, Storm NJ, Xin Q, Juste YR, et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 2021; 184(10): 2696-2714.e25.
DOI: 10.1016/j.cell.2021.03.048
Baharudin R, Rus Bakarurraini NQ, Ismail I, Lee L-H, Ab Mutalib NS. MicroRNA methylome signature and their functional roles in colorectal cancer diagnosis, prognosis, and chemoresistance. Int J Mol Sci 2022; 23: 7281.
DOI: 10.3390/ijms23137281
Zhu W, Shen Y, Liu J, Fei X, Zhang Z, Li M, Chen X, Xu J, Zhu Q, Zhou W, Zhang M, Liu S, Du J. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med, 2020; 24(23): 13899-912.
DOI: 10.1111/jcmm.15984
Corella D, Fernández-Carrión R, Portolés O, Francés F, Saiz C, Barragán R, Castelló-Ponce A, et al. Association between adherence to a Mediterranean diet pattern and DNA methylation of the main autophagy-related genes. Current Developments in Nutrition 2022; 6(Suppl 1): 6.
DOI: 10.1093/cdn/nzac047.006
Sarparanta J, García-Macia M, Singh R. Autophagy and mitochondria in obesity and type 2 diabetes. Curr Diabetes Rev, 2017; 13(4): 352-69.
DOI: 10.2174/1573399812666160217122530
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009; 30; 458(7242): 1131-5.
DOI: 10.1038/nature07976
Quan W, Lim YM, Lee MS. Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med. 2012; 44(2): 81-8.
DOI: 10.3858/emm.2012.44.2.030
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor MV. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11: 637–45.
DOI: 10.1016/j.redox.2017.01.013
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011; 147(4): 728–41.
DOI: 10.1016/j.cell.2011.10.026
Dorn GW, Kitsis RN. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res 2015; 116(1): 167-82.
DOI: 10.1161/CIRCRESAHA.116.303554
Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia, 2014; 57: 1505–1516.
DOI: 10.1007/s00125-014-3255-3
Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 2014;20(3):417-432.
DOI: 10.1016/j.cmet.2014.06.009
Ramos-Lopez O, Milton-Laskibar I, Martínez JA; Collaborators: San-Cristobal R, Portillo MP. Precision nutrition based on phenotypical traits and the (epi)genotype: nutrigenetic and nutrigenomic approaches for obesity care. Curr Opin Clin Nutr Metab Care 2021; 24(4): 315-25.
DOI: 10.1097/MCO.0000000000000754
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566–76.
DOI: 10.1007/s00125-017-4318-z
Sanchez-Rangel E, Inzucchi SE Metformin: clinical use in type 2 diabetes. Diabetologia 2017; 60(9): 1586–93.
DOI: 10.1007/s00125-017-4336-x
Das AK, Shah S, Singh S K, Juneja A, Mishra NK, Dasgupta A, Deka N, Abhyankar M, Revankar S. Real-World clinical experience on the usage of high-dose Metformin (1500-2500 mg/day) in Type 2 Diabetes management. Clin Med Insights Endocrinol Diabetes 2021; 14: 11795514211030513.
DOI: 10.1177/11795514211030513
Isaacs D, Prasad-Reddy L, Srivastava SB. Role of glucagon-like peptide 1 receptor
agonists in management of obesity. Am J Health Syst Pharm 2016;3(19):493-507.
Marathe CS, Rayner CK, Jones KL, Horowitz M. Glucagon-like peptides 1 and 2 in health and disease: a review. Peptides 2013; 44: 75-86.
DOI: 10.1016/j.peptides.2013.01.014
Yaribeygi H, Atkin SL, Pirro M, Sahebkar A. A review of the anti-inflammatory
properties of antidiabetic agents providing protective effects against vascular
complications in diabetes. J Cell Physiol 2019;34(6): 8286-94.
Chao EC. SGLT-2 Inhibitors: A new mechanism for glycemic control. Clin Diabetes 2014; 32(1): 4-11.
DOI: 10.2337/diaclin.32.1.4
Costas MA, Rubio MF. Autofagia, una estrategia de supervivencia celular. Medicina (Buenos Aires) 2017; 77(4): 314-20. ISSN 1669-9106 (En línea)
Macho-González A, Sánchez-Muniz FJ. Autofagia un sistema celular de limpieza clave para la salud. Una visita al Premio Nobel de Fisiología o Medicina de 2016. JONNPR 2022; 7(3): 000-000.
Chen J-L, Luo C, Pu D, Zhang G-Q, Zhao Y-X, Sun Y, et al. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol 2019; 311: 44-56.
DOI: 10.1016/j.expneurol.2018.09.008
Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 2017; 25(2): 463-71.
DOI: 10.1016/j.cmet.2016.12.009
Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A. Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 2019; 13(4): 2445-9.
DOI: 10.1016/j.dsx.2019.06.028
40. Yang Y, Fang H, Xu G, Zhen Y, Zhang Y, Tian J, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep 2018; 18(2): 2449-57.
DOI: 10.3892/mmr.2018.9180
Shao N, Yu X-Y, Ma X-F, Lin W-J, Hao M, Kuang H-Y. Exenatide delays the progression of nonalcoholic fatty liver disease in C57BL/6 mice, which may involve inhibition of the NLRP3 inflammasome through the mitophagy pathway. Gastroenterol Res Pract 2018; 2018:1864307.
DOI: 10.1155/2018/1864307
Gu Y, Ma C, Gu H, Shi L, Tian X, Xu W. Sitagliptin improves cardiac function after myocardial infarction through activation of autophagy in streptozotocin induced diabetic mice. Eur Rev Med Pharmacol Sci 2018; 22(24): 8973-83.
Zhou Y, Wang H, Man F, Guo Z, Xu J, Yan W, et al. Sitagliptin protects cardiac function by reducing nitroxidative stress and promoting autophagy in Zucker diabetic fatty (ZDF) rats. Cardiovasc Drugs Ther 2018; 32: 541–52. doi.org/10.1007/s10557-018-6831-9
DOI: 10.1007/s10557-018-6831-9
Zheng W, Zhou J, Song S, Kong W, Xia W, Chen L, et al. Dipeptidyl-peptidase 4 inhibitor sitagliptin ameliorates hepatic insulin resistance by modulating inflammation and autophagy in ob/ob mice. Int J Endocrinol 2018; 19: 2018:8309723.
DOI: 10.1155/2018/8309723
Bayrami G, Alihemmati A, Karimi P, Javadi A, Keyhanmanesh R, Mohammadi M, et al. Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity. Adv Pharm Bull 2018; 8(2): 319-29.
DOI: 10.15171/apb.2018.037
Dai X, Zeng J, Yan X, Lin Q, Wang K, Chen J, et al. Sitagliptin-mediated preservation of endothelial progenitor cell function via augmenting autophagy enhances ischaemic angiogenesis in diabetes. J Cell Mol Med 2018; 22(1): 89-100.
DOI: 10.1111/jcmm.13296
Yaribeygi H, Atkin SL, Katsiki N, Sahebkar A. Narrative review of the effects of antidiabetic drugs on albuminuria. J Cell Physiol 2019; 234(5): 5786-97.
DOI: 10.1002/jcp.27503
Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 2019; 15(5): 843-70.
DOI: 10.1080/15548627.2019.1569913
Mizuno M, Kuno A, Yano T, Miki T, Oshima H, Sato T, et al. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiol Rep 2018; 6(12): e13741.
DOI: 10.14814/phy2.13741

Artículos Relacionados:

Trabajo Original: Estimación de la prevalencia de los fenotipos en pacientes con enfermedad pulmonar obstructiva crónica. estudio adepocle

Ana Beatriz De Abajo Larriba , Enrique Méndez Rodríguez , Javier González-gallego , Jessica Capón Álvarez , Ángel Díaz Rodríguez , Beatriz Peleteiro Cobo , Omar Mahmoud Atoui , Serafín De Abajo Olea , Víctor Lumbreras González , Juan Martínez De Mandojana Hernández

Publicado: 2017-01-30 / http://dx.doi.org/10.20960/nh.995

Nota Clínica: Anorexia nerviosa como causa de fallo hepático agudo. a propósito de un caso

Beatriz Voltas-arribas , Ana Artero-Fullana , Juan Carlos Ferrer-garcía , Carlos Sánchez-juan , Cristian Marco-alacid , Pablo Sanz-revert , Lourdes García-blasco

Publicado: 2017-07-10 / http://dx.doi.org/10.20960/nh.1422

Trabajo Original: Definition of nutritionally qualitative categorizing (proto)nutritypes and a pilot quantitative nutrimeter for mirroring nutritional well-being based on a quality of life health related questionnaire

Begoña de Cuevillas , Ismael Álvarez-Álvarez , Marta Cuervo , Alejandro Fernández-Montero , Santiago Navas-Carretero , José Alfredo Martínez

Publicado: 2019-01-31 / http://dx.doi.org/10.20960/nh.02532

Revisión: Influencia de la ingesta de alimentos o grupos de alimentos en la aparición y/o protección de los diversos tipos de cáncer: revisión sistemática

Enrique Contreras García , Ana Zaragoza-Martí

Publicado: 2019-03-17 / http://dx.doi.org/10.20960/nh.02588

Trabajo Original: Contribution of rs3211938 polymorphism at CD36 to glucose levels, oxidized low-density lipoproteins, insulin resistance, and body mass index in Mexican mestizos with type-2 diabetes from western Mexico

Beatriz Teresita Martín-Márquez , Flavio Sandoval-Garcia , Mónica Vazquez-Del Mercado , Erika-Aurora Martínez-García , Fernanda-Isadora Corona-Meraz , Ana-Lilia Fletes-Rayas , Soraya-Amalí Zavaleta-Muñiz

Publicado: 2020-11-21 / http://dx.doi.org/10.20960/nh.03447

Trabajo Original: Acceptance of different types of thickeners, with and without flavoring, in hospitalized patients with dysphagia — A pilot study

Alfonso Vidal-Casariego , Sonia González-Núñez , Francisco Pita Gutiérrez , Gloria Lugo Rodríguez , Teresa Martínez-Ramonde

Publicado: 2021-04-07 / http://dx.doi.org/10.20960/nh.03639

Trabajo Original: Association between relative handgrip strength and abdominal obesity, type-2 diabetes and hypertension in a Mexican population

Iris Paola Guzmán-Guzmán , Pedro Delgado-Floody , Ilse Adriana Gutiérrez-Pérez , Felipe Caamaño-Navarrete , Daniel Jerez-Mayorga , Óscar Zaragoza-García , Isela Parra-Rojas

Publicado: 2021-06-08 / http://dx.doi.org/10.20960/nh.03732

Trabajo Original: Escala de Fenotipos de Comportamiento Alimentario (EFCA), análisis factorial confirmatorio y propiedades psicométricas

Vanesa Erica Anger , Jesica Formoso , Mónica Teresa Katz

Publicado: 2021-08-28 / http://dx.doi.org/10.20960/nh.03849

Trabajo Original: A dietary pattern high in full-fat dairy and sweetened beverages is associated with glycated hemoglobin and weight in Mexican patients with type-2 diabetes

Lubia Velázquez-López , Xochitl Ponce-Martínez , Eloísa Colín-Ramírez , Abril Violeta Muñoz-Torres , Jorge Escobedo-de la Peña

Publicado: 2021-04-15 / http://dx.doi.org/10.20960/nh.03651

Trabajo Original: Diabetes might not be a risk factor for worse prognosis among hospitalized patients due to COVID-19 in a Mediterranean area

Joana Nicolau , Pilar Sanchís , Keyla Dotres Fallat , Andrea Romano , Irene Rodríguez , Lluís Masmiquel

Publicado: 2021-08-31 / http://dx.doi.org/10.20960/nh.03855

Trabajo Original: Comparación entre dos tipos de gastrostomías quirúrgicas, abierta y laparoscópica, en nutrición enteral domiciliaria

Publicado: 2021-10-04 / http://dx.doi.org/

Trabajo Original: Does fetuin-A mediate the association between pro-inflammatory diet and type-2 diabetes mellitus risk?

Kadriye Toprak , Süleyman Görpelioğlu , Ahmet Özsoy , Şeyda Özdemir , Aylin Ayaz

Publicado: 2021-08-27 / http://dx.doi.org/10.20960/nh.03848

Trabajo Original: Effect of different protein types on second meal postprandial glycaemia in normal weight and normoglycemic subjects

Publicado: 2021-11-02 / http://dx.doi.org/

Trabajo Original: Composición mineral de los distintos tipos de gofio canario; factores que afectan a la presencia de Na, K, Mg, Ca, Mn, Fe, Cu y Zn

Publicado: 2021-11-03 / http://dx.doi.org/

Revisión: Indicaciones de diferentes tipos de fibra en distintas patologías

Publicado: 2021-11-30 / http://dx.doi.org/

Trabajo Original: Obesity phenotypes in urban middle-class cohorts; the PRIT-Lindavista merging evidence in Mexico: the OPUS PRIME study

Publicado: 2021-12-01 / http://dx.doi.org/

Trabajo Original: Effect of sodium reduction based on the DASH diet on blood pressure in hypertensive patients with type 2 diabetes

Lisha Mu , Pingping Yu , Huini Xu , Tao Gong , Dan Chen , Jie Tang , Yujia Zou , Huakun Rao , Ying Mei , Lihong Mu

Publicado: 2022-01-15 / http://dx.doi.org/10.20960/nh.04039

Trabajo Original: Agreement between vector analysis and body composition measurements by four types of bioelectrical impedance technology in hemodialysis patients

Ángeles Espinosa-Cuevas , Larisa-Ximena Ch-Durán , Ximena Atilano Carsi , Ailema González-Ortiz , Samuel Ramos-Acevedo , Sonia López-Cisneros , Ricardo Correa Rotter , Paola Vanessa Miranda Alatriste

Publicado: 2021-12-20 / http://dx.doi.org/10.20960/nh.04005

Trabajo Original: Effect of 52 % low-sodium salt applied to CM-DASH Diet on atherosclerotic cardiovascular disease risks in patients with hypertension and type-2 diabetes

Jie Tang , Dan Chen , Lisha Mu , Pingping Yu , Tao Gong , Huini Xu , Ziyan Zhang , Shuwen Cai , Lihong Mu , Ying Mei

Publicado: 2022-02-13 / http://dx.doi.org/10.20960/nh.04081

Trabajo Original: Prevalence of non-alcoholic fatty liver disease (NAFLD) in a cohort of patients with type 2 diabetes: the PHIGNA-DM2 study

Antonio Jesús Martínez-Ortega , Ana Piñar Gutiérrez , Carmen Lara-Romero , Pablo Jesús Remón Ruiz , Javier Ampuero-Herrojo , Irene de Lara-Rodríguez , Manuel Romero-Gómez , Pedro P. García Luna , Alfonso Soto-Moreno

Publicado: 2021-11-25 / http://dx.doi.org/10.20960/nh.03969

Trabajo Original: Randomized clinical trial to evaluate the effect on postprandial glycemia of Nutren Control®, a glycemia-targeted specialized supplement, compared to standardized breakfast in patients with type-2 diabetes: the CONTROL DIABETES study

Roberto Luis Zagury , Paulo Lacativa , Luis Henrique de Gregório , Valéria Abrahão Schilling Rosenfeld , Leticia Fuganti Campos , Renata Alexandra Calixto Pinheiro , Samuel Ferreira da Costa , Luis Augusto Tavares Russo

Publicado: 2022-04-23 / http://dx.doi.org/10.20960/nh.04204

Revisión: Interacciones microbiota-dieta: hacia la personalización de la nutrición

Mar Larrosa , Sara Martínez-López , Liliana Guadalupe González-Rodríguez , Viviana Loria-Kohen , Beatriz de Lucas

Publicado: 2022-06-23 / http://dx.doi.org/10.20960/nh.04309

Trabajo Original: La masa muscular disminuida en la diabetes de tipo 2. Una comorbilidad oculta que debemos tener en cuenta

Daniel de Luis Román , Fernando Garrachón Vallo , Juana Carretero Gómez , Juan José López Gómez , Francisco José Tarazona Santabalbina , Germán Guzmán Rolo , José M. García Almeida , Alejandro Sanz Paris

Publicado: 2022-09-28 / http://dx.doi.org/10.20960/nh.04468

Revisión: La dieta como fuente de sulfuro de hidrógeno y sus efectos en la salud y la enfermedad

Carolina Belem Gómez , Yolanda Contreras Vargas , Arturo Serrano Sánchez , Luz del Carmen Camacho Castillo , David Centurión Pacheco , Karla Carvajal Aguilera

Publicado: 2022-09-28 / http://dx.doi.org/10.20960/nh.04471

Trabajo Original: Associations among SNPs in two addictive genes, food addiction, and antioxidant markers in recreationally active young women

Tuğba Küçükkasap Cömert , Özlem Muşlu , Duygu Ağagündüz

Publicado: 2022-10-08 / http://dx.doi.org/10.20960/nh.04487

Carta Editor: Relationship between fermented dairy consumption, gut microbiota and type 2 diabetes

Sergio Vladimir Flores , Ángel Roco-Videla

Publicado: 2024-07-19 / http://dx.doi.org/10.20960/nh.05435

Artículos más populares

Revisión: La importancia de la alimentación en la prevención de la endometriosis: revisión sistemática

Antecedentes y objetivo: la endometriosis es un tr...

Publicado: 2023-08-30

Revisión: Revisión de la nutrición e hidratación con relación al ejercicio físico en el embarazo

Los estudios sobre recomendaciones nutricionales p...

Publicado: 2023-11-29

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.