Nutrición Hospitalaria 05699 / http://dx.doi.org/10.20960/nh.05699
Resumen| PDF

Revisión

Análisis de composición corporal en tomografía computarizada mediante programas informáticos de segmentación gratuitos


Andrés Jiménez-Sánchez, Pedro Pablo García-Luna

Prepublicado: 2025-04-02

Logo Descargas   Número de descargas: 421      Logo Visitas   Número de visitas: 211      Citas   Citas: 0

Compártelo:


La tomografía computarizada (TC) es una técnica directa y de referencia para el análisis de composición corporal con interesantes posibilidades en nutrición clínica. La segmentación es el proceso automático o semiautomático basado en programas informáticos por el cual se delimitan, separan y cuantifican los diferentes tejidos metabólicos de interés (muscular, adiposo subcutáneo, adiposo visceral y adiposo intermuscular) que forman parte de los diagnósticos actuales de desnutrición, sarcopenia y obesidad sarcopénica. El protocolo Alberta es la guía de segmentación más común y aplicable en la mayoría de los programas. En este trabajo revisamos las principales características de los programas de segmentación de código abierto más habituales, su grado de acuerdo y las limitaciones de este proceso.

Palabras Clave: Tomografía computarizada. Análisis de composición corporal. Software. Inteligencia artificial



Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer Oxf Engl 1990. 2016;57:58-67.
DOI: 10.1016/j.ejca.2015.12.030
Alberta Protocol [Internet]. [citado 2 de enero de 2025]. Disponible en: https://tomovision.com/Sarcopenia_Help/index.htm
Hong JH, Hong H, Choi YR, Kim DH, Kim JY, Yoon JH, et al. CT analysis of thoracolumbar body composition for estimating whole-body composition. Insights Imaging. 2023;14(1):69.
DOI: 10.1186/s13244-023-01402-z
Lacoste Jeanson A, Dupej J, Villa C, Brůžek J. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans. PeerJ. 2017;5:e3302.
DOI: 10.7717/peerj.3302
Jung Lee S, Janssen I, Heymsfield SB, Ross R. Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr. noviembre de 2004;80(5):1215-21.
3D Slicer [Internet]. [citado 2 de enero de 2025]. 3D Slicer image computing platform. Disponible en: https://slicer.org/
Jördens MS, Wittig L, Heinrichs L, Keitel V, Schulze-Hagen M, Antoch G, et al. Sarcopenia and Myosteatosis as Prognostic Markers in Patients with Advanced Cholangiocarcinoma Undergoing Palliative Treatment. J Clin Med. 2021;10(19):4340.
DOI: 10.3390/jcm10194340
Yu N, Xu C, Jiang Y, Liu D, Lin L, Zheng G, et al. Characteristics of Abdominal Fat Based on CT Measurements to Predict Early Recurrence After Initial Surgery of NMIBC in Stage Ta/T1. Clin Genitourin Cancer. 2024;22(6):102199.
DOI: 10.1016/j.clgc.2024.102199
Fang R, Yan L, Xu S, Xu Y, Gan T, Gong J, et al. Unraveling the obesity paradox in small cell lung cancer immunotherapy: unveiling prognostic insights through body composition analysis. Front Immunol. 2024;15:1439877.
Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AW, et al. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. Radiol Artif Intell. 2023;5(5):e230024.
DOI: 10.1148/ryai.230024
GitHub - lassoan/SlicerTotalSegmentator: Fully automatic total body segmentation in 3D Slicer using «TotalSegmentator» AI model [Internet]. [citado 2 de enero de 2025]. Disponible en: https://github.com/lassoan/SlicerTotalSegmentator
Mullie L, Afilalo J. CoreSlicer: a web toolkit for analytic morphomics. BMC Med Imaging. 2019;19(1):15.
DOI: 10.1186/s12880-019-0316-6
CoreSlicer [Internet]. [citado 2 de enero de 2025]. Disponible en: https://old.coreslicer.com/
GitHub - louismullie/web-ct-segmentation [Internet]. [citado 2 de enero de 2025]. Disponible en: https://github.com/louismullie/web-ct-segmentation
Doonan RJ, Bin-Ayeed S, Charbonneau P, Hongku K, Obrand D, Mackenzie K, et al. Low Psoas Muscle Area is Associated with Increased Mortality and Spinal Cord Injury After Complex Endovascular Aortic Aneurysm Repair. Ann Vasc Surg. 2022;87:430-6.
DOI: 10.1016/j.avsg.2022.05.037
Hillers AH, Bach SW, Saito A, Azawi N. Muscle matters: Skeletal muscle index and body mass index impact on complications and survival in renal cancer. BJUI Compass. 2024;5(8):783-90.
DOI: 10.1002/bco2.405
Home Page - Horos Project [Internet]. 2018 [citado 2 de enero de 2025]. Disponible en: https://horosproject.org/
tpecot. tpecot/MuViSS [Internet]. 2024 [citado 2 de enero de 2025]. Disponible en: https://github.com/tpecot/MuViSS
ImageJ Wiki [Internet]. [citado 25 de diciembre de 2024]. Fiji Downloads. Disponible en: https://imagej.github.io/software/fiji/downloads
InVesalius [Internet]. [citado 2 de enero de 2025]. Disponible en: https://invesalius.github.io/download.html
ITK-SNAP Version 4.x Downloads [Internet]. [citado 2 de enero de 2025]. Disponible en: http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP4
Yushkevich P. pyushkevich/itksnap [Internet]. 2024 [citado 2 de enero de 2025]. Disponible en: https://github.com/pyushkevich/itksnap
Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:3342.
DOI: 10.1109/EMBC.2016.7591443
GitHub - stmharry/body-composition: Code and data for automatic body composition assessment. [Internet]. [citado 2 de enero de 2025]. Disponible en: https://github.com/stmharry/body-composition
Hsu TMH, Schawkat K, Berkowitz SJ, Wei JL, Makoyeva A, Legare K, et al. Artificial intelligence to assess body composition on routine abdominal CT scans and predict mortality in pancreatic cancer- A recipe for your local application. Eur J Radiol. 2021;142:109834.
DOI: 10.1016/j.ejrad.2021.109834
Bridge C, Rosenthal M, Wright B, Kotecha G, Fintelmann F, Troschel F, et al. Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks. En: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis [Internet]. CARE CLIP OR 2.0 ISIC 2018; 2018 Sept 16-20; Granada, España. Berlin: Springer Nature, 2018 [citado 2 de enero de 2025]. pp. 204 - 213.
GitLab [Internet]. 2020 [citado 2 de enero de 2025]. Files · master · Michael Paris / AutoMATiCA · GitLab. Disponible en: https://gitlab.com/Michael_Paris/AutoMATiCA/-/tree/master
UMEssen/Body-and-Organ-Analysis [Internet]. University Medicine Essen; 2024 [citado 2 de enero de 2025]. Disponible en: https://github.com/UMEssen/Body-and-Organ-Analysis
van Vugt JLA, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JWA, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017;8(2):285-97.
DOI: 10.1002/jcsm.12158
Barbalho ER, Rocha IMGD, Medeiros GOCD, Friedman R, Fayh APT. Agreement between software programmes of body composition analyses on abdominal computed tomography scans of obese adults. Arch Endocrinol Metab. 2019.
DOI: 10.20945/2359-3997000000174
Rollins KE, Awwad A, Macdonald IA, Lobo DN. A comparison of two different software packages for analysis of body composition using computed tomography images. Nutrition. 2019;57:92-6.
DOI: 10.1016/j.nut.2018.06.003
Pescatori LC, Savarino E, Mauri G, Silvestri E, Cariati M, Sardanelli F, et al. Quantification of visceral adipose tissue by computed tomography and magnetic resonance imaging: reproducibility and accuracy. Radiol Bras. 2019;52(1):1-6.
Dolan RD, Tien YT, Horgan PG, Edwards CA, McMillan DC. The relationship between computed tomography-derived body composition and survival in colorectal cancer: the effect of image software. JCSM Rapid Commun. 2020;3(2):81-90.
DOI: 10.1002/rco2.15
Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629-35.
DOI: 10.1016/S1470-2045(08)70153-0
Irving BA, Weltman JY, Brock DW, Davis CK, Gaesser GA, Weltman A. NIH ImageJ and Slice-O-Matic computed tomography imaging software to quantify soft tissue. Obes Silver Spring Md. 2007;15(2):370-6.
DOI: 10.1038/oby.2007.573
Jiménez-Sánchez A, Soriano-Redondo ME, Pereira-Cunill JL, Martínez-Ortega AJ, Rodríguez-Mowbray JR, Ramallo-Solís IM, et al. A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients. Diagnostics. 2024;14(15):1696.
DOI: 10.3390/diagnostics14151696
van Vugt JLA, van Putten Y, van der Kall IM, Buettner S, D’Ancona FCH, Dekker HM, et al. Estimated skeletal muscle mass and density values measured on computed tomography examinations in over 1000 living kidney donors. Eur J Clin Nutr. 2019;73(6):879-86.
DOI: 10.1038/s41430-018-0287-7
Dolan RD, Almasaudi AS, Dieu LB, Horgan PG, McSorley ST, McMillan DC. The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer. J Cachexia Sarcopenia Muscle. 2019;10(1):111-22.
Doyle SL, Bennett AM, Donohoe CL, Mongan AM, Howard JM, Lithander FE, et al. Establishing computed tomography-defined visceral fat area thresholds for use in obesity-related cancer research. Nutr Res N Y N. 2013;33(3):171-9.
DOI: 10.1016/j.nutres.2012.12.007
Querido NR, Bours MJL, Brecheisen R, Valkenburg-van Iersel L, Breukink SO, Janssen-Heijnen MLG, et al. Validation of an automated segmentation method for body composition analysis in colorectal cancer patients using diagnostic abdominal computed tomography images. Clin Nutr ESPEN. 2024;63:659-67.
DOI: 10.1016/j.clnesp.2024.07.1054
Paris MT, Tandon P, Heyland DK, Furberg H, Premji T, Low G, et al. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin Nutr. 2020;39(10):3049-55.
Charrière K, Boulouard Q, Artemova S, Vilotitch A, Ferretti GR, Bosson JL, et al. A comparative study of two automated solutions for cross-sectional skeletal muscle measurement from abdominal computed tomography images. Med Phys. 2023;50(8):4973-80.
DOI: 10.1002/mp.16261
Weasis DICOM medical viewer :: Weasis Documentation [Internet]. [citado 2 de enero de 2025]. Disponible en: https://weasis.org/en/
RadiAnt DICOM Viewer | ES [Internet]. [citado 2 de enero de 2025]. Disponible en: https://www.radiantviewer.com/es/
Aryanto KYE, Oudkerk M, Ooijen PMA van. Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur Radiol. 2015;25(12):3685.
DOI: 10.1007/s00330-015-3794-0
GitHub [Internet]. [citado 2 de enero de 2025]. Releases · RSNA/anonymizer. Disponible en: https://github.com/RSNA/anonymizer/releases
Drag ’n Drop batch Anonymization of DICOM data for free - doRadiology.com [Internet]. [citado 2 de enero de 2025]. Disponible en: https://dicomanonymizer.com/
Jiménez-Sánchez A, Soriano-Redondo ME, Roque-Cuéllar M del C, García-Rey S, Valladares-Ayerbes M, Pereira-Cunill JL, et al. Muscle Biomarkers in Colorectal Cancer Outpatients: Agreement Between Computed Tomography, Bioelectrical Impedance Analysis, and Nutritional Ultrasound. Nutrients. 2024;16(24):4312.
DOI: 10.3390/nu16244312

Artículos Relacionados:

Trabajo Original: Measurement of body composition in cancer patients using CT planning scan at the third lumbar vertebra

Bianca Tabita Muresan , Carlos Sánchez Juan , Ana Artero , Ana Hernández Machancoses , Piedad Almendros-Blanco , Alegría Montoro , Joan Roselló Ferrando , Rafael Íñigo Valdenebro , Jaime Ríos Ríos , Jose M. Soriano , José Vicente Quirante Cascales , José López-Torrecilla

Publicado: 2018-12-02 / http://dx.doi.org/10.20960/nh.2435

Trabajo Original: Diagnosis of pre-sarcopenia from a single selectional crosscut at C3 region, using CT scans before radiotherapy

Bianca Tabita Muresan , Carlos Sánchez Juan , Ana Artero , Ana Hernández Machancoses , Piedad Almendros-Blanco , Alegría Montoro , Gonzalo Sánchez Jordá , Cristian Marco-Alacid , Jaime Ríos Ríos , Jose M. Soriano , Laura Sánchez Guillén , José López-Torrecilla

Publicado: 2018-11-25 / http://dx.doi.org/10.20960/nh.02422

Trabajo Original: Discriminatory power of indicators predictors of visceral adiposity evaluated by computed tomography in adults and elderly individuals

Publicado: 2021-11-04 / http://dx.doi.org/

Trabajo Original: Dietopro.com: una nueva herramienta de gestión dietoterapéutica basada en la tecnología cloud computing

Publicado: 2021-11-08 / http://dx.doi.org/

Trabajo Original: Impact of a high-fat diet containing canola or soybean oil on body development and bone; parameters in adult male rats

Publicado: 2021-11-30 / http://dx.doi.org/

Carta Editor: Algoritmos de búsqueda e inteligencia artificial, una ayuda imprescindible en el desarrollo de revisiones sistematizadas

Marcela Caviedes-Olmos , Ángel Roco-Videla

Publicado: 2022-06-30 / http://dx.doi.org/10.20960/nh.04336

Carta Editor: La inteligencia artificial y su implicación en el desarrollo de revisiones sistematizadas. Usos y limitaciones

Ángel Roco-Videla , Marcela Caviedes-Olmos , Raúl Aguilera-Eguía , Mariela Olguín-Barraza

Publicado: 2023-08-21 / http://dx.doi.org/10.20960/nh.04889

Trabajo Original: Correlation of physical function and physical activity with muscle mass measured with computed tomography in adult hemodialysis patients

Geovana Martín-Alemañy , Monserrat Pérez-Navarro , Kenneth R. Wilund , Rosalba Hernández , Paul N. Bennett , Mariana Oseguera-Brizuela , Miguel Ángel Reyes Calderas , Rafael Valdez-Ortiz

Publicado: 2023-12-05 / http://dx.doi.org/10.20960/nh.05069

Artículo Especial: Role of artificial intelligence in predicting disease-related malnutrition - A narrative review

Daniel de Luis Román , Juan José López Gómez , David Emilio Barajas Galindo , Cristina García García

Publicado: 2024-12-16 / http://dx.doi.org/10.20960/nh.05672

Revisión: Inteligencia artificial generativa ChatGPT en nutrición clínica: avances y desafíos

Daniel de Luis Román

Publicado: 2024-12-31 / http://dx.doi.org/10.20960/nh.05692

Revisión: Reto clínico 4. Y en el paciente crítico… ¿Puedo utilizar estrategias de inteligencia artificial para mejorar los resultados clínicos?

Joaquín Álvarez Rodríguez

Publicado: 2025-02-06 / http://dx.doi.org/10.20960/nh.05775

Artículos más populares

Artículo Especial: VII Lección Jesús Culebras. Respuesta inflamatoria sistémica y disfunción/ fracaso multiorgánico tras una agresión: implicaciones metabólicas

Ante cualquier agresión, el organismo pone en marc...

Publicado: 2017-01-30

Artículo Especial: VIII Lección Jesús Culebras. Medicina intensiva, nutrición e hiperglucemia: una relación muy estrecha

El paciente crítico presenta una respuesta metaból...

Publicado: 2017-07-28

Trabajo Original: Waist-to-height ratio and its relation with cardiometabolic risk factors in children from Bucaramanga, Colombia

Background: Currently, the waist-to-height ratio (...

Publicado: 2017-02-21

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.