Nutrición Hospitalaria 03918 /
Resumen| PDF (ENGLISH)

Trabajo Original

Potential molecular mechanism of the Xiexin capsule in the intervention of dyslipidemia based on bioinformatics and molecular docking

Kunpeng Yao, Huzhi Cai, Yating Wang, Shuo Cheng, Qili Liu, Daoping Zhang, Qingyang Chen, Xinyu Chen

Prepublicado: 2022-03-01
Publicado: 2022-06-17

Logo Descargas   Número de descargas: 828      Logo Visitas   Número de visitas: 2598      Citas   Citas: 0


Objective: bioinformatic methods and molecular docking technology were used to predict the active components, targets, and related biological pathways of the Xiexin capsule in the intervention for dyslipidemia, exploring its mechanism. Methods: the active components and targets of the Xiexin capsule were screened by the TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform )database. Genecards (The Human Gene Database), OMIM (Online Mendelian Inheritance in Man), PharmGkb (Pharmacogenomics Knowledge Base database), TTD (Therapeutic Target Database), and Drugbank platforms were used to search the disease targets of dyslipidemia. The Cytoscape 3.8.0 software was used to construct the 'component-target' network diagram, and the STRING (functional protein association networks) platform was used to analyze protein-protein interaction (PPI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment analyses were performed by R language data packets to predict the mechanism of action. The AutoDockVina and PyMol software were used to dock the key active components in the Xiexin capsule and the core proteins in PPI. Results: a total of 66 effective components were screened, involving 114 targets; 87 key active compounds were screened from the 'drug-component-target' diagram. The PPI network mainly involved core proteins such as PTGS2 (prostaglandin-endoperoxide synthase 2), PTGS1 (prostaglandin-endoperoxide synthase 1), and HSP90AA1 (heat shock protein 90 alpha family class A member 1). GO and KEGG enrichment analysis results of common targets mainly involved hormone-mediated signaling pathway, steroid hormone response, lipid transport and metabolism, regulation of cholesterol storage, cyclooxygenase pathway, and other biological pathways, as well asMM PPAR (peroxisome proliferators-activated receptor) signaling pathway, IL-17 (interleukin 17) signaling pathway, PI3K-Akt (protein kinase b) signaling pathway, FcεRI signaling pathway, and other related pathways. Molecular docking verification showed that quercetin had the best binding with the core target protein HSP90AA1, and HSP90AA1 was the target protein with the best binding activity for the key chemical components in Xiexin capsules. Conclusion: the main chemical components in the Xiexin capsules may participate in the regulation of PPAR and other signaling pathways by regulating key genes such as ESR1 (estrogen receptor 1), MAPK14 (mitogen-activated protein kinase 14), and HSP90AA1, to exert the pharmacological effect of the intervention on dyslipidemia.

Palabras Clave: Xiexin capsule. Dyslipidemia. Bioinformatics. Molecular mechanism.

[1] A. L. Catapano, I. Graham, G. De Backer, et al., "2016 ESC/EAS Guidelines for the Management of Dyslipidaemias," Rev Esp Cardiol (Engl Ed), vol. 70, no. 2, pp. 115,2017
[2] S. E. Borggreve, R. De Vries, and R. P. Dullaart. "Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins," European Journal of Clinical Investigation, vol. 33, no. 12, pp. 1051-1069,2003
DOI: 10.1111/j.1365-2362.2003.01263.x
[3] H. Okazaki, T. Gotoda, M. Ogura, et al., "Current Diagnosis and Management of Primary Chylomicronemia," J Atheroscler Thromb, vol.,2021
DOI: 10.5551/jat.RV17054
[4] J. Miao, X. Zang, X. Cui, and J. Zhang. "Autophagy, Hyperlipidemia, and Atherosclerosis," Adv Exp Med Biol, vol. 1207, pp. 237-264,2020
DOI: 10.1007/978-981-15-4272-5_18
[5] P. Kraft, M. K. Schuhmann, C. Garz, et al., "Hypercholesterolemia induced cerebral small vessel disease," PloS One, vol. 12, no. 8, pp. e0182822,2017
DOI: 10.1371/journal.pone.0182822
[6] S. Choudhuri, P. K. Roy, B. Mitra, et al., "Hyperlipidemia-Mediated Increased Advanced Lipoxidation End Products Formation, an Important Factor Associated with Decreased Erythrocyte Glucose-6-Phosphate Dehydrogenase Activity in Mild Nonproliferative Diabetic Retinopathy," Can J Diabetes, vol. 41, no. 1, pp. 82-89,2017
DOI: 10.1016/j.jcjd.2016.07.007
[7] Y. L. Ma, H. Yao, W. J. Yang, X. X. Ren, L. Teng, and M. C. Yang. "Correlation between Traditional Chinese Medicine Constitution and Dyslipidemia: A Systematic Review and Meta-Analysis," Evidence-Based Complementary and Alternative Medicine, vol. 2017, pp. 1896746,2017
DOI: 10.1155/2017/1896746
[8] P. Hao, F. Jiang, J. Cheng, L. Ma, Y. Zhang, and Y. Zhao. "Traditional Chinese Medicine for Cardiovascular Disease: Evidence and Potential Mechanisms," Journal of the American College of Cardiology, vol. 69, no. 24, pp. 2952-2966,2017
DOI: 10.1016/j.jacc.2017.04.041
[9] A. L. Catapano, I. Graham, G. De Backer, et al., "2016 ESC/EAS Guidelines for the Management of Dyslipidaemias," European Heart Journal, vol. 37, no. 39, pp. 2999-3058,2016
DOI: 10.1093/eurheartj/ehw272
[10] Q. Zhang, J. Dong, and Z. Yu. "Pleiotropic use of Statins as non-lipid-lowering drugs," International Journal of Biological Sciences, vol. 16, no. 14, pp. 2704-2711,2020
DOI: 10.7150/ijbs.42965
[11] W. Zhang, Y. Huai, Z. Miao, A. Qian, and Y. Wang. "Systems Pharmacology for Investigation of the Mechanisms of Action of Traditional Chinese Medicine in Drug Discovery," Frontiers in Pharmacology, vol. 10, pp. 743,2019
DOI: 10.3389/fphar.2019.00743
[12] O. P. Ganda, D. L. Bhatt, R. P. Mason, M. Miller, and W. E. Boden. "Unmet Need for Adjunctive Dyslipidemia Therapy in Hypertriglyceridemia Management," Journal of the American College of Cardiology, vol. 72, no. 3, pp. 330-343,2018
DOI: 10.1016/j.jacc.2018.04.061
[13] E. D. Michos, C. T. Sibley, J. T. Baer, M. J. Blaha, and R. S. Blumenthal. "Niacin and statin combination therapy for atherosclerosis regression and prevention of cardiovascular disease events: reconciling the AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) trial with previous surrogate endpoint trials," Journal of the American College of Cardiology, vol. 59, no. 23, pp. 2058-2064,2012
DOI: 10.1016/j.jacc.2012.01.045
[14] P. P. Toth, A. M. Patti, R. V. Giglio, et al., "Management of Statin Intolerance in 2018: Still More Questions Than Answers," American Journal of Cardiovascular Drugs, vol. 18, no. 3, pp. 157-173,2018
DOI: 10.1007/s40256-017-0259-7
[15] Jane Armitage. "The safety of statins in clinical practice," The Lancet, vol. 370, no. 9601, pp. 1781-1790,2007
DOI: 10.1016/S0140-6736(07)60716-8
[16] N. C. Ward, G. F. Watts, and R. H. Eckel. "Statin Toxicity," Circulation Research, vol. 124, no. 2, pp. 328-350,2019
DOI: 10.1161/CIRCRESAHA.118.312782
[17] P. D. Thompson, G. Panza, A. Zaleski, and B. Taylor. "Statin-Associated Side Effects," Journal of the American College of Cardiology, vol. 67, no. 20, pp. 2395-2410,2016
DOI: 10.1016/j.jacc.2016.02.071
[18] T. T. Sham, C. O. Chan, Y. H. Wang, J. M. Yang, D. K. Mok, and S. W. Chan. "A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect," Biomed Res Int, vol. 2014, pp. 925302,2014
DOI: 10.1155/2014/925302
[19] J. O. Hendrickx, J. van Gastel, H. Leysen, B. Martin, and S. Maudsley. "High-dimensionality Data Analysis of Pharmacological Systems Associated with Complex Diseases," Pharmacological Reviews, vol. 72, no. 1, pp. 191-217,2020
DOI: 10.1124/pr.119.017921
[20] M. Yang, J. L. Chen, L. W. Xu, and G. Ji. "Navigating traditional chinese medicine network pharmacology and computational tools," Evidence-Based Complementary and Alternative Medicine, vol. 2013, pp. 731969,2013
DOI: 10.1155/2013/731969
[21] H. Ma, Y. Hu, Z. Zou, M. Feng, X. Ye, and X. Li. "Antihyperglycemia and Antihyperlipidemia Effect of Protoberberine Alkaloids From Rhizoma Coptidis in HepG2 Cell and Diabetic KK-Ay Mice," Drug Development Research, vol. 77, no. 4, pp. 163-170,2016
DOI: 10.1002/ddr.21302
[22] N. Ning, K. He, Y. Wang, et al., "Hypolipidemic Effect and Mechanism of Palmatine from Coptis chinensis in Hamsters Fed High-Fat diet," Phytotherapy Research, vol. 29, no. 5, pp. 668-673,2015
DOI: 10.1002/ptr.5295
[23] C. Y. Kim, K. S. Chung, S. Y. Cheon, et al., "Hypolipidemic effects of HVC1 in a high cholesterol dietinduced rat model of hyperlipidemia," Mol Med Rep, vol. 14, no. 4, pp. 3152-3158,2016
DOI: 10.3892/mmr.2016.5615
[24] A. M. Badawy, R. N. El-Naga, A. M. Gad, M. G. Tadros, and H. M. Fawzy. "Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-gamma, inflammation, apoptosis and Wnt/beta-catenin pathway," Chemico-Biological Interactions, vol. 308, pp. 137-146,2019
DOI: 10.1016/j.cbi.2019.05.029
[25] D. S. Gelinas and J. McLaurin. "PPAR-alpha expression inversely correlates with inflammatory cytokines IL-1beta and TNF-alpha in aging rats," Neurochemical Research, vol. 30, no. 11, pp. 1369-1375,2005
DOI: 10.1007/s11064-005-8341-y
[26] H. D. Li, X. Chen, Y. Yang, et al., "Wogonin attenuates inflammation by activating PPAR-gamma in alcoholic liver disease," International Immunopharmacology, vol. 50, pp. 95-106,2017
DOI: 10.1016/j.intimp.2017.06.013
[27] R. J. Choi, J. Chun, S. Khan, and Y. S. Kim. "Desoxyrhapontigenin, a potent anti-inflammatory phytochemical, inhibits LPS-induced inflammatory responses via suppressing NF-kappaB and MAPK pathways in RAW 264.7 cells," International Immunopharmacology, vol. 18, no. 1, pp. 182-190,2014
DOI: 10.1016/j.intimp.2013.11.022
[28] S. Xiao, Z. Zhang, M. Chen, et al., "Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism," Journal of Ethnopharmacology, vol. 241, pp. 112032,2019
DOI: 10.1016/j.jep.2019.112032
[29] Christian Grommes, Gary E. Landreth, and Michael T. Heneka. "Antineoplastic effects of peroxisome proliferatoractivated receptor γ agonists," The Lancet Oncology, vol. 5, no. 7, pp. 419-429,2004
DOI: 10.1016/S1470-2045(04)01509-8
[30] T. Yamauchi, J. Kamon, H. Waki, et al., "The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance," Journal of Biological Chemistry, vol. 276, no. 44, pp. 41245-41254,2001
DOI: 10.1074/jbc.M103241200
[31] T. Goto. "A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors," Bioscience, Biotechnology, and Biochemistry, vol. 83, no. 4, pp. 579-588,2019
DOI: 10.1080/09168451.2018.1559025
[32] X. Palomer, E. Barroso, M. Zarei, G. Botteri, and M. Vazquez-Carrera. "PPARbeta/delta and lipid metabolism in the heart," Biochim Biophys Acta, vol. 1861, no. 10, pp. 1569-1578,2016
DOI: 10.1016/j.bbalip.2016.01.019
[33] J. Zheng, X. Xiao, Q. Zhang, M. Yu, J. Xu, and Z. Wang. "Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring," International Journal of Molecular Sciences, vol. 15, no. 9, pp. 14967-14983,2014
DOI: 10.3390/ijms150914967
[34] M. C. Zhou, P. Yu, Q. Sun, and Y. X. Li. "Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway," J Diabetes Investig, vol. 7, no. 2, pp. 179-189,2016
DOI: 10.1111/jdi.12402
[35] L. Pan, Y. Tian, H. Sun, Y. Wang, and G. Liu. "TMT-based proteomics analysis reveals the efficacy of jiangzhuo formula in improving the lipid profiles of dyslipidemia rats," Journal of Ethnopharmacology, vol. 264, pp. 113390,2021
DOI: 10.1016/j.jep.2020.113390
[36] M. Endres, P. U. Heuschmann, U. Laufs, and A. M. Hakim. "Primary prevention of stroke: blood pressure, lipids, and heart failure," European Heart Journal, vol. 32, no. 5, pp. 545-552,2011
DOI: 10.1093/eurheartj/ehq472
[37] M. M. Perez, L. M. S. Martins, M. S. Dias, et al., "Interleukin-17/interleukin-17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in high-fat diet-induced metabolic syndrome model," Immunology, vol. 156, no. 4, pp. 339-355,2019
DOI: 10.1111/imm.13028
[38] M. L. Matey-Hernandez, F. M. K. Williams, T. Potter, A. M. Valdes, T. D. Spector, and C. Menni. "Genetic and microbiome influence on lipid metabolism and dyslipidemia," Physiological Genomics, vol. 50, no. 2, pp. 117-126,2018
DOI: 10.1152/physiolgenomics.00053.2017
[39] X. Wang, R. Ilarraza, B. P. Tancowny, S. B. Alam, and M. Kulka. "Disrupted Lipid Raft Shuttling of FcepsilonRI by n-3 Polyunsaturated Fatty Acid Is Associated With Ligation of G Protein-Coupled Receptor 120 (GPR120) in Human Mast Cell Line LAD2," Front Nutr, vol. 7, pp. 597809,2020
DOI: 10.3389/fnut.2020.597809
[40] S. Manti, S. Leonardi, I. Panasiti, T. Arrigo, C. Salpietro, and C. Cuppari. "Serum IL-10, IL-17 and IL-23 levels as "bioumoral bridges" between dyslipidemia and atopy," Cytokine, vol. 99, pp. 43-49,2017
DOI: 10.1016/j.cyto.2017.07.002

Artículos Relacionados:

Trabajo Original: Effects of oat bran and nutrition counseling on the lipid and glucose profile and anthropometric parameters of hypercholesterolemia patients

Simone Raimondi De Souza , Gláucia Maria Moraes De Oliveira , Ronir Raggio Luiz , Glorimar Rosa

Publicado: 2016-02-17 /

Trabajo Original: Cociente androide/ginecoide como factor pronóstico para dislipidemia en pacientes pediátricos con enfermedad renal crónica

Lourdes Barbosa-Cortés , Miguel Ángel Villasís-Keever , Irene Montalvo-Valverde , Alejandra Aguilar-Kitsu , Karina Díaz de León-Félix , Eos Eunice Gómez-López , Jessie Nallely Zurita-Cruz

Publicado: 2019-01-22 /

Trabajo Original: Asociación entre el consumo de yerba mate y el perfil lipídico en mujeres con sobrepeso

María Virginia Avena Álvarez , Diego Nicolás Messina , Carla Corte , Jessica Anabella Mussi Stoizik , Aldana Saez , Paola Boarelli , Rafael Pérez Elizalde

Publicado: 2019-03-26 /

Trabajo Original: Obesity and cardio-metabolic risk factors among children and adolescents with cerebral palsy

Salesa Barja , Catalina Le Roy , Cecilia Sepúlveda , Maria Luisa Guzmán , Marithza Olivarez , María José Figueroa

Publicado: 2020-01-20 /

Trabajo Original: Association between dyslipidemia and anthropometric indicators in adolescents

Publicado: 2021-06-24 /

Trabajo Original: Anthropometric indices; predictors of dyslipidemia in children and adolescents from north of Brazil

Publicado: 2021-09-29 /

Revisión: Bioactive vegetable proteins and peptides in lipid-lowering; nutraceutical potential

Publicado: 2021-11-03 /

Trabajo Original: Nutritional status, lipid profile and HOMA-IR in post-liver transplant patients

Publicado: 2021-11-03 /

Trabajo Original: A genetic variant of the CAPN10 gene in Mexican subjects with dyslipidemia is associated with increased HDL-cholesterol concentrations after the consumption of a soy protein and soluble fiber dietary portfolio

Publicado: 2021-11-08 /

Trabajo Original: Las alteraciones metabólicas asociadas a la obesidad están ya presentes en los primeros años de vida: estudio colaborativo español

Publicado: 2021-11-15 /

Revisión: Mechanisms used by inulin-type fructans to improve the lipid profile

Publicado: 2021-11-18 /

Trabajo Original: Prevalencia de síndrome metabólico y factores de riesgo asociados en jóvenes universitarios ecuatorianos

Publicado: 2021-11-26 /

Trabajo Original: Utilidad de una estrategia nutricional sobre la dislipidemia en pacientes pediátricos con enfermedad renal crónica terminal

Miguel Ángel Villasís-Keever , Jessie Nallely Zurita-Cruz , Aly Sugei Barradas-Vázquez , Lourdes Barbosa-Cortés , Claudia del Carmen Zepeda-Martínez , Gabriela Alegría-Torres , Marianne González-Estévez , Juan Manuel Domínguez-Salgado

Publicado: 2021-10-26 /

Trabajo Original: The association of selenium status with thyroid hormones and anthropometric values in dyslipidemic patients

Publicado: 2021-11-29 /

Trabajo Original: Dislipidemias en escolares chilenos: prevalencia y factores asociados

Publicado: 2021-11-29 /

Trabajo Original: Efecto hipolipemiante del consumo de mate en individuos dislipidémicos

Publicado: 2021-11-29 /

Revisión: Spirulina y su efecto hipolipemiante y antioxidante en humanos: una revisión sistemática

Publicado: 2021-12-09 /

Trabajo Original: Anti-diabetic effects of Inonotus obliquus extract in high fat diet combined streptozotocin-induced type 2 diabetic mice

Shanshan Chen , Yuanye Ma , Haojie Li , Hui Lang , Yongchun Li , Jie Wu , Min Zhou , Yingxin He , Yuan Liu , Erfeng Guo

Publicado: 2021-08-17 /

Trabajo Original: The action of avocado oil on the lipidogram of wistar rats submitted to prolonged androgenic stimulum

Publicado: 2022-01-11 /

Trabajo Original: Chemical composition, characterization of anthocyanins and antioxidant potential of Euterpe edulis fruits: applicability on genetic dyslipidemia and hepatic steatosis in mice

Publicado: 2022-01-11 /

Trabajo Original: Lipid profile and associated factors among elderly people, attended at the Family Health Strategy, Viçosa/MG

Publicado: 2022-01-12 /

Trabajo Original: Macronutrient intake is correlated with dyslipidemia and low-grade inflammation in childhood obesity but mostly in male obese

Publicado: 2022-01-12 /

Revisión: Effect of chia seed (Salvia hispanica L.) consumption on cardiovascular risk factors in humans: a systematic review

Publicado: 2022-01-20 /

Trabajo Original: Apolipoproteins and their association with cardiometabolic risk biomarkers in adolescents

Publicado: 2022-01-21 /

Trabajo Original: The leptin/adiponectin ratio as prognostic marker for dyslipidemia during 1 year of follow-up in pediatric patients receiving kidney replacement therapy

Miguel Ángel Villasís-Keever , Jessie Nallely Zurita-Cruz , Juana Serret-Montoya , Lourdes Barbosa-Cortés , Claudia del Carmen Zepeda-Martínez , Gabriela Alegría-Torres , Aly Sugei Barradas-Vázquez , Sara Alonso-Flores , Carolina Hernández-Hernández , Leticia Manuel-Apolinar , Leticia Damasio-Santana , Juan Manuel Domínguez-Salgado

Publicado: 2021-09-29 /

Editorial: Importancia de la bioinformática en la medicina actual. ¿Es realmente necesaria la bioinformática en la práctica clínica?

Ana M.ª Lago Sampedro , Eva García-Escobar

Publicado: 2022-05-19 /

Artículos más populares

Revisión: Ayuno intermitente: efectos en diversos escenarios clínicos

Introducción: los esquemas de ayuno intermitente (...

Publicado: 2023-05-24

Trabajo Original: Body mass index and risk of inflammatory breast disease: a Mendelian randomization study

Introduction: in previous studies, obesity was ide...

Publicado: 2023-04-22

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.