Nutrición Hospitalaria 05277 / http://dx.doi.org/10.20960/nh.05277
Resumen| PDF (ENGLISH)

Trabajo Original

Decision tree model development and in silico validation for avoidable hospital readmissions at 30 days in a pediatric population


Nayara Cristina da Silva, Laurence Rodrigues do Amaral, Matheus de Souza Gomes, Pedro Luiz Lima Bertarini, Marcelo Keese Albertini, André Ricardo Backes, Geórgia das Graças Pena

Prepublicado: 2024-09-19
Publicado: 2024-12-16

Logo Descargas   Número de descargas: 2342      Logo Visitas   Número de visitas: 1228      Citas   Citas: 0

Compártelo:


Background and objective: identifying patients at high risk of avoidable readmission remains a challenge for healthcare professionals. Despite the recent interest in Machine Learning in this topic, studies are scarce and commonly using only black box algorithms. The aim of our study was to develop and validate in silico an interpretable predictive model using a decision tree inference to identify pediatric patients at risk of 30-day potentially avoidable readmissions. Methods: a retrospective cohort study was conducted with all patients under 18 years admitted to a tertiary university hospital. Demographic, clinical and nutritional data were collected from electronic databases. The outcome was the potentially avoidable 30-day readmissions. The J48 algorithm was used to develop the best-fit trees capable of classifying the outcome efficiently. Leave-one-out cross-validation was applied and we computed the area under the receiver operating curve (AUC). Results: the most important attributes of the model were C-reactive protein, hemoglobin and sodium levels, besides nutritional monitoring. We obtained an AUC of 0.65 and accuracy of 63.3 % for the full training and leave-one-out cross-validation. Conclusion: our model allows the identification of 30-day potentially avoidable readmissions through practical indicators facilitating timely interventions by the medical team, and might contribute to reduce this outcome.

Palabras Clave: Hospital readmission. Pediatrics. Decision tree. Algorithms. Supervised machine learning.



Ehwerhemuepha L, Bendig D, Steele C, Rakovski C, Feaster W. The Effect of Malnutrition on the Risk of Unplanned 7-Day Readmission in Pediatrics. Hosp Pediatr. 2018;8(4):207–13.
DOI: 10.1542/hpeds.2017-0195
Taylor T, Altares Sarik D, Salyakina D. Development and Validation of a Web-Based Pediatric Readmission Risk Assessment Tool. Hosp Pediatr. 2020;10(3):246–56.
DOI: 10.1542/hpeds.2019-0241
Silva VLS da, França GVA de, Munhoz TN, Santos IS, Barros AJD, Barros FC, et al. Hospitalization in the first years of life and development of psychiatric disorders at age 6 and 11: a birth cohort study in Brazil. Cad Saude Publica [Internet]. 2018 May 28;34(5):1–13. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2018000505012&lng=en&tlng=en
DOI: 10.1590/0102-311x00064517
Delvecchio E, Salcuni S, Lis A, Germani A, Di Riso D. Hospitalized Children: Anxiety, Coping Strategies, and Pretend Play. Front Public Heal. 2019;7(September):1–8.
DOI: 10.3389/fpubh.2019.00250
Cahayag V. Hospitalization and Child Development: Effects on Sleep, Developmental Stages, and Separation Anxiety. Nurs | Sr Theses [Internet]. 2020;17. Available from: https://doi.org/10.33015/dominican.edu/2020.NURS.ST.09
DOI: 10.33015/dominican.edu/2020.NURS.ST.09
Pufal EC, Müller AB, Bandeira PFR, Valentini NC. Motor development in the hospitalized infant and its biological and environmental characteristics. Clin Biomed Res [Internet]. 2018;38(1):66–73. Available from: http://doi.editoracubo.com.br/10.4322/2357-9730.75638
DOI: 10.4322/2357-9730.75638
Rashikj Canevska O. The Impact of Hospitalization on Psychophysical Development and Everyday Activities in Children. Annu Fac Philos Skopje [Internet]. 2018;71(January 2018):465–70. Available from: http://periodica.fzf.ukim.edu.mk/godzb/GZ71(2018)/GZ71.46. Rasic Canevska, O. - The Impact of Hospitalization on Psychophysical Development and Everyday Activities in Children.pdf
DOI: 10.37510/godzbo1871465rc
Markham JL, Hall M, Gay JC, Bettenhausen JL, Berry JG. Length of Stay and Cost of Pediatric Readmissions. Pediatrics [Internet]. 2018 Apr;141(4):e20172934. Available from: http://pediatrics.aappublications.org/lookup/doi/10.1542/peds.2017-2934
DOI: 10.1542/peds.2017-2934
Gay JC, Agrawal R, Auger KA, Del Beccaro MA, Eghtesady P, Fieldston ES, et al. Rates and Impact of Potentially Preventable Readmissions at Children’s Hospitals. J Pediatr [Internet]. 2015 Mar;166(3):613-619.e5. Available from: http://dx.doi.org/10.1016/j.jpeds.2014.10.052
DOI: 10.1016/j.jpeds.2014.10.052
Kane JM, Hall M, Cecil C, Montgomery VL, Rakes LC, Rogerson C, et al. Resources and Costs Associated With Repeated Admissions to PICUs. Crit Care Explor [Internet]. 2021 Feb 17;3(2):e0347. Available from: https://journals.lww.com/10.1097/CCE.0000000000000347
DOI: 10.1097/CCE.0000000000000347
Niehaus IM, Kansy N, Stock S, Dötsch J, Müller D. Applicability of predictive models for 30-day unplanned hospital readmission risk in paediatrics: a systematic review. BMJ Open [Internet]. 2022 Mar 30;12(3):e055956. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2021-055956
DOI: 10.1136/bmjopen-2021-055956
Wolff P, Graña M, Ríos SA, Yarza MB. Machine Learning Readmission Risk Modeling: A Pediatric Case Study. Biomed Res Int [Internet]. 2019 Apr 15;2019:1–9. Available from: https://www.hindawi.com/journals/bmri/2019/8532892/
DOI: 10.1155/2019/8532892
Zhou H, Albrecht MA, Roberts PA, Porter P, Della PR, Della PR. Using machine learning to predict paediatric 30-day unplanned hospital readmissions: A case-control retrospective analysis of medical records, including written discharge documentation. Aust Heal Rev. 2021;45(3):328–37.
DOI: 10.1071/AH20062
Symum H, Zayas-Castro J. Identifying Children at Readmission Risk: At-Admission versus Traditional At-Discharge Readmission Prediction Model. Healthcare [Internet]. 2021 Oct 7;9(10):1334. Available from: https://www.mdpi.com/2227-9032/9/10/1334
DOI: 10.3390/healthcare9101334
Ehwerhemuepha L, Gasperino G, Bischoff N, Taraman S, Chang A, Feaster W. HealtheDataLab – a cloud computing solution for data science and advanced analytics in healthcare with application to predicting multi-center pediatric readmissions. BMC Med Inform Decis Mak [Internet]. 2020 Dec 19;20(1):115. Available from: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01153-7
DOI: 10.1186/s12911-020-01153-7
Hajjej F, Alohali MA, Badr M, Rahman MA. A Comparison of Decision Tree Algorithms in the Assessment of Biomedical Data. Rokaya D, editor. Biomed Res Int [Internet]. 2022 Jul 7;2022:1–9. Available from: https://www.hindawi.com/journals/bmri/2022/9449497/
DOI: 10.1155/2022/9449497
Kirk D, Catal C, Tekinerdogan B. Precision nutrition: A systematic literature review. Comput Biol Med [Internet]. 2021 Jun;133(March):104365. Available from: https://doi.org/10.1016/j.compbiomed.2021.104365
DOI: 10.1016/j.compbiomed.2021.104365
Feudtner C, Levin JE, Srivastava R, Goodman DM, Slonim AD, Sharma V, et al. How Well Can Hospital Readmission Be Predicted in a Cohort of Hospitalized Children? A Retrospective, Multicenter Study. Pediatrics. 2009;123(1):286–93.
DOI: 10.1542/peds.2007-3395
Zhou H, Roberts PA, Dhaliwal SS, Della PR. Risk factors associated with paediatric unplanned hospital readmissions: a systematic review. BMJ Open [Internet]. 2019 Jan;9(1):e020554. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2017-020554
DOI: 10.1136/bmjopen-2017-020554
Kumar D, Swarnim S, Sikka G, Aggarwal S, Singh A, Jaiswal P, et al. Factors Associated with Readmission of Pediatric Patients in a Developing Nation. Indian J Pediatr. 2019;86(3):267–75.
DOI: 10.1007/s12098-018-2767-0
Ehwerhemuepha L, Finn S, Rothman M, Rakovski C, Feaster W. A Novel Model for Enhanced Prediction and Understanding of Unplanned 30-Day Pediatric Readmission. Hosp Pediatr. 2018;8(9):578–87.
DOI: 10.1542/hpeds.2017-0220
Zhou H, Della P, Roberts P, Porter P, Dhaliwal S. A 5-year retrospective cohort study of unplanned readmissions in an Australian tertiary paediatric hospital. Aust Heal Rev. 2019;43(6):662–71.
DOI: 10.1071/AH18123
Ehwerhemuepha L, Pugh K, Grant A, Taraman S, Chang A, Rakovski C, et al. A Statistical-Learning Model for Unplanned 7-Day Readmission in Pediatrics. Hosp Pediatr. 2020;10(1):43–51.
DOI: 10.1542/hpeds.2019-0122
Loreto M, Lisboa T, Moreira VP. Early prediction of ICU readmissions using classification algorithms. Comput Biol Med. 2020;118(February).
DOI: 10.1016/j.compbiomed.2020.103636
Ziv-Baran T, Wasserman A, Shteinvil R, Zeltser D, Shapira I, Shenhar-Tsarfaty S, et al. C-reactive protein and emergency department seven days revisit. Clin Chim Acta [Internet]. 2018 Jun;481(March):207–11. Available from: https://doi.org/10.1016/j.cca.2018.03.022
DOI: 10.1016/j.cca.2018.03.022
Gülcher SS, Bruins NA, Kingma WP, Boerma EC. Elevated C-reactive protein levels at ICU discharge as a predictor of ICU outcome: a retrospective cohort study. Ann Intensive Care [Internet]. 2016 Dec 13;6(1):5. Available from: http://www.annalsofintensivecare.com/content/6/1/5
DOI: 10.1186/s13613-016-0105-0
Indicadores de Qualidade em Terapia Nutricional Pediátrica. Int Life Sci Inst do Bras [Internet]. 2017 Oct 29;3. Available from: http://www.escs.edu.br/revistaccs/index.php/comunicacaoemcienciasdasaude/article/view/307
Raslan M, Gonzalez MC, Dias MCG, Paes-Barbosa FC, Cecconello I, Waitzberg DL. Aplicabilidade dos métodos de triagem nutricional no paciente hospitalizado. Rev Nutr. 2008;21(5):553–61.
DOI: 10.1590/S1415-52732008000500008
Joosten KFM, Hulst JM. Nutritional screening tools for hospitalized children: Methodological considerations. Clin Nutr [Internet]. 2014 Feb;33(1):1–5. Available from: http://dx.doi.org/10.1016/j.clnu.2013.08.002
DOI: 10.1016/j.clnu.2013.08.002
Sarni ROS, Carvalho M de FCC, Monte CMG do, Albuquerque ZP, Souza FIS. Anthropometric evaluation, risk factors for malnutrition, and nutritional therapy for children in teaching hospitals in Brazil. J Pediatr (Rio J) [Internet]. 2009 Jun 1;85(3):223–8. Available from: http://www.jped.com.br/conteudo/Ing_resumo.asp?varArtigo=1964&cod=&idSecao=1
DOI: 10.2223/JPED.1890
Lin RJ, Evans AT, Chused AE, Unterbrink ME. Anemia in General Medical Inpatients Prolongs Length of Stay and Increases 30-Day Unplanned Readmission Rate. South Med J [Internet]. 2013 May;106(5):316–20. Available from: http://sma.org/southern-medical-journal/article/anemia-in-general-medical-inpatients-prolongs-length-of-stay-and-increases-30-day-unplanned-readmission-rate
DOI: 10.1097/SMJ.0b013e318290f930
Melku M, Alene KA, Terefe B, Enawgaw B, Biadgo B, Abebe M, et al. Anemia severity among children aged 6-59 months in Gondar town, Ethiopia: A community-based cross-sectional study. Ital J Pediatr. 2018;44(1):1–12.
DOI: 10.1186/s13052-018-0547-0
Jutras C, Charlier J, François T, Du Pont-Thibodeau G. Anemia in Pediatric Critical Care. Int J Clin Transfus Med. 2020;8:23–33.
DOI: 10.2147/IJCTM.S229764
Sloniewsky D. Anemia and Transfusion in Critically Ill Pediatric Patients. A Review of Etiology, Management, and Outcomes. Crit Care Clin [Internet]. 2013;29(2):301–17. Available from: http://dx.doi.org/10.1016/j.ccc.2012.11.005
DOI: 10.1016/j.ccc.2012.11.005
Walter T, De Andraca I, Chadud P, Perales CG. Iron deficiency anemia: Adverse effects on infant psychomotor development. Pediatrics. 1989;84(1):7–17.
DOI: 10.1542/peds.84.1.7
Lu H, Vollenweider P, Kissling S, Marques-vidal P. Prevalence and Description of Hyponatremia in a Swiss Tertiary Care Hospital : An Observational Retrospective Study. Front Med. 2020;7(September):1–9.
DOI: 10.3389/fmed.2020.00512
Corona G, Giuliani C, Parenti G, Colombo GL, Sforza A, Maggi M, et al. The Economic Burden of Hyponatremia: Systematic Review and Meta-Analysis. Am J Med [Internet]. 2016 Aug;129(8):823-835.e4. Available from: http://dx.doi.org/10.1016/j.amjmed.2016.03.007
DOI: 10.1016/j.amjmed.2016.03.007
Donzé JD, Beeler PE, Bates DW. Impact of Hyponatremia Correction on the Risk for 30-Day Readmission and Death in Patients with Congestive Heart Failure. Am J Med [Internet]. 2016 Aug;129(8):836–42. Available from: http://dx.doi.org/10.1016/j.amjmed.2016.02.036
DOI: 10.1016/j.amjmed.2016.02.036
Girardeau Y, Jannot AS, Chatellier G, Saint-Jean O. Association between borderline dysnatremia and mortality insight into a new data mining approach. BMC Med Inform Decis Mak. 2017;17(1):1–10.
DOI: 10.1186/s12911-017-0549-7
Akirov A, Diker-Cohen T, Steinmetz T, Amitai O, Shimon I. Sodium levels on admission are associated with mortality risk in hospitalized patients. Eur J Intern Med [Internet]. 2017 Dec;46:25–9. Available from: http://dx.doi.org/10.1016/j.ejim.2017.07.017
DOI: 10.1016/j.ejim.2017.07.017

Artículos Relacionados:

Artículo Especial: Nutrición en enfermedad inflamatoria intestinal

María Josefa Martínez Gómez , Cristóbal Melián Fernández , María Romeo Donlo

Publicado: 2016-07-12 / http://dx.doi.org/10.20960/nh.348

Grupo de Trabajo SENPE: Componentes de las mezclas de nutrición parenteral para pediatría

Pilar Gomis Muñoz

Publicado: 2017-06-26 / http://dx.doi.org/10.20960/nh.1378

Trabajo Original: Nutritional aspects in allogeneic hematopoietic stem cell transplantation in children and adolescents in a tertiary hospital

Claudia Georgiadis Lewandowski , Liane Esteves Daudt , Ana Maria Keller Jochims , Alessandra Paz , Elza Daniel de Mello

Publicado: 2018-05-23 / http://dx.doi.org/10.20960/nh.2050

Trabajo Original: Efecto de la alimentación saludable previa a la intervención con dieta baja en FODMAP en pacientes pediátricos con síndrome de intestino irritable

Marta Suárez González , Juan José Díaz Martín , Santiago Jiménez Treviño , Carlos Alfredo Bousoño García

Publicado: 2018-08-10 / http://dx.doi.org/10.20960/nh.2234

Carta Editor: Tamización nutricional en Pediatría. Calidad de la evidencia

David Fernando López-Daza

Publicado: 2018-11-15 / http://dx.doi.org/10.20960/nh.2404

Trabajo Original: Formulación de nutrición parenteral neonatal: ¿dónde estamos?

Mar Tripiana Rallo , Belén Montañés Pauls , Virginia Bosó Ribelles , Raúl Ferrando Piqueres

Publicado: 2019-10-08 / http://dx.doi.org/10.20960/nh.02903

Revisión: Hipótesis sobre las conexiones entre COVID-19 severo en niños y nutrición: una revisión narrativa

Ximena León-Lara , Ariana Vargas-Castillo , Azalia Avila-Nava , Martha Guevara-Cruz , Aurora E Serralde Zúñiga , Isabel Medina-Vera

Publicado: 2020-11-25 / http://dx.doi.org/10.20960/nh.03452

Trabajo Original: Prevalencia de la prediabetes y sus comorbilidades en la población pediátrica mexicana

Carlos Adrián González Cortés , Patricia Elizabeth Cossío-Torres , Juan Manuel Vargas-Morales , Marisol Vidal Batres , Gicela de Jesús Galván Almazán , Diana Patricia Portales-Pérez , Aldanely Padrón Salas , Celia Aradillas-García

Publicado: 2021-02-04 / http://dx.doi.org/10.20960/nh.03567

Trabajo Original: Déficit de vitamina D en una población pediátrica sana. La importancia de una adecuada profilaxis

Inés Martínez Redondo , Ruth García Romero , Pilar Calmarza , Antonio de Arriba Muñoz , Diana Martínez-Redondo , Alejandro Sanz Paris

Publicado: 2021-03-07 / http://dx.doi.org/10.20960/nh.03606

Trabajo Original: Estudio Nutricional en Población Infantil Española (EsNuPI): actualización de hallazgos y primeras conclusiones

Cassandra Madrigal Arellano , Ángela Hernández Ruiz , María José Soto-Méndez , Ángel Gil

Publicado: 2021-07-20 / http://dx.doi.org/10.20960/nh.03792

Trabajo Original: Evaluando la desnutrición en pediatría, un reto vigente

Ana Isabel Jiménez-Ortega , Ana Belén Martínez Zazo , María Dolores Salas-González , Rosa M. Martínez-García , Liliana Guadalupe González-Rodríguez

Publicado: 2021-07-20 / http://dx.doi.org/10.20960/nh.03801

Carta Editor: Crítica de libros: Manual de Nutrición

José Manuel Moreno Villares , Jaime Dalmau Serra

Publicado: 2021-08-03 / http://dx.doi.org/10.20960/nh.03818

Trabajo Original: Riesgo cardiometabólico en niños con obesidad grave

María José Lopez Lucas , Salesa Barja , Luis Villarroel del Pino , Pilar Arnaiz , Francisco Mardones

Publicado: 2021-08-12 / http://dx.doi.org/10.20960/nh.03829

Trabajo Original: Validación de una herramienta de cribado nutricional para pacientes pediátricos hospitalizados

Publicado: 2021-10-04 / http://dx.doi.org/

Trabajo Original: The prevalence of overweight and obesity in adolescents in Bahia, Brazil

Publicado: 2021-10-19 / http://dx.doi.org/

Artículo Especial: Aplicaciones clínicas del empleo de probióticos en pediatría

Publicado: 2021-10-20 / http://dx.doi.org/

Trabajo Original: Niveles de lípidos sanguíneos en escolares chilenos de 10 a 14 años de edad

Publicado: 2021-10-25 / http://dx.doi.org/

Trabajo Original: Anemia y déficit de hierro en niños con enfermedades respiratorias crónicas

Publicado: 2021-10-25 / http://dx.doi.org/

Trabajo Original: Algorithm for the early diagnosis of vitamin B12 deficiency in elderly people

Publicado: 2021-10-27 / http://dx.doi.org/

Trabajo Original: Ateroesclerosis subclínica y síndrome metabólico en niños

Publicado: 2021-10-27 / http://dx.doi.org/

Trabajo Original: Estado nutricional, síndrome metabólico y resistencia a la insulina en niños de Santiago, Chile

Publicado: 2021-10-29 / http://dx.doi.org/

Trabajo Original: Metabolic syndrome and its components are strongly associated with an inflammatory state and insulin resistance in the pediatric population

Publicado: 2021-11-26 / http://dx.doi.org/

Trabajo Original: Utilidad de una estrategia nutricional sobre la dislipidemia en pacientes pediátricos con enfermedad renal crónica terminal

Miguel Ángel Villasís-Keever , Jessie Nallely Zurita-Cruz , Aly Sugei Barradas-Vázquez , Lourdes Barbosa-Cortés , Claudia del Carmen Zepeda-Martínez , Gabriela Alegría-Torres , Marianne González-Estévez , Juan Manuel Domínguez-Salgado

Publicado: 2021-10-26 / http://dx.doi.org/10.20960/nh.03921

Trabajo Original: Dislipidemias en escolares chilenos: prevalencia y factores asociados

Publicado: 2021-11-29 / http://dx.doi.org/

Trabajo Original: Valores del índice cintura/cadera en la población escolar de Bogotá, Colombia: Estudio FUPRECOL

Publicado: 2022-01-20 / http://dx.doi.org/

Trabajo Original: Diagnosis of metabolic syndrome in children as a potential indicator of technical ability in medical and nutritional care

Publicado: 2022-01-20 / http://dx.doi.org/

Revisión: Revisión y actualización de la importancia de los micronutrientes en la edad pediátrica, visión holística

Inmaculada Ferreres Giménez , María Gloria Pueyo Alamán , M.ª José Alonso Osorio

Publicado: 2022-06-23 / http://dx.doi.org/10.20960/nh.04305

Carta Editor: Algoritmos de búsqueda e inteligencia artificial, una ayuda imprescindible en el desarrollo de revisiones sistematizadas

Marcela Caviedes-Olmos , Ángel Roco-Videla

Publicado: 2022-06-30 / http://dx.doi.org/10.20960/nh.04336

Trabajo Original: Mejoría de la adherencia a la dieta mediterránea en preescolares asistentes al jardín infantil

Emilia Jobet Bustos , María Inés Loyola Alegría , Carolina Ortiz Castro , Attilio Rigotti , Guadalupe Echeverría , Claudia Mallea , Salesa Barja

Publicado: 2023-04-12 / http://dx.doi.org/10.20960/nh.04727

Carta Editor: Crítica de libros: Tratamiento nutricional en Pediatría

José Manuel Moreno Villares

Publicado: 2023-05-18 / http://dx.doi.org/10.20960/nh.04777

Revisión: Problemática nutricional de los niños vegetarianos y veganos

Ana Isabel Jiménez-Ortega , Rosa M. Martínez-García , María Dolores Salas-González , Adrián Cervera-Muñoz , María del Carmen Lozano-Estevan

Publicado: 2023-09-19 / http://dx.doi.org/10.20960/nh.04949

Trabajo Original: Heuristic evaluation of body mass index with bioimpedance data in the Mexican population

Arnulfo Ramos-Jiménez , Marco Antonio Hernández Lepe , Rosa Patricia Hernández-Torres , Miguel Murguía-Romero

Publicado: 2024-03-29 / http://dx.doi.org/10.20960/nh.05247

Artículos más populares

Artículo Especial: VII Lección Jesús Culebras. Respuesta inflamatoria sistémica y disfunción/ fracaso multiorgánico tras una agresión: implicaciones metabólicas

Ante cualquier agresión, el organismo pone en marc...

Publicado: 2017-01-30

Artículo Especial: VIII Lección Jesús Culebras. Medicina intensiva, nutrición e hiperglucemia: una relación muy estrecha

El paciente crítico presenta una respuesta metaból...

Publicado: 2017-07-28

Trabajo Original: Waist-to-height ratio and its relation with cardiometabolic risk factors in children from Bucaramanga, Colombia

Background: Currently, the waist-to-height ratio (...

Publicado: 2017-02-21

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.