Nutrición Hospitalaria 06026 / http://dx.doi.org/10.20960/nh.06026
Resumen| PDF (ENGLISH)

Trabajo Original

Evaluation of scientific validity and appropriateness of artificial intelligence-assisted ChatGPT advices in dietary treatment of methylmalonic acidemia


Furkan Yolcu, Merve Koç Yekedüz, Engin Köse, Fatima Gülhan Samur, Fatma Tuba Eminoğlu

Prepublicado: 2025-09-24

Logo Descargas   Número de descargas: 14      Logo Visitas   Número de visitas: 13      Citas   Citas: 0

Compártelo:


Background and objectives: Chat Generative Pretrained Transformer (ChatGPT) has become an increasingly popular way for patients and healthcare professionals to seek information on health and nutrition advice. Previous studies have raised concerns about the accuracy of dietary advice provided by ChatGPT. We aimed to evaluate the potential of ChatGPT as a tool to provide dietary therapy for methylmalonic acidemia (MMA) in October 2024. Methods and study design: we compared ChatGPT's (version 4.0) dietary advices for MMA with internationally recognized guidelines and current literature, and then evaluated the chatbot's ability to generate dietary therapy in two different cases with MMA. A team of dietitians and metabolic physicians compared ChatGPT responses to disease-specific guidelines and evidence-based resources. Results: overall, ChatGPT provided clear advices: 20.0 % of responses were considered appropriate and 53.4 % were considered inappropriate. Especially in this group of patients whose only known treatment was dietary therapy, the dietary therapy recommended by ChatGPT was also inappropriate for the two cases in question. Conclusions: this study was the first to evaluate the appropriateness of artificial intelligence advices for specialized dietary management of inherited metabolic disorders. Consequently, the idea that artificial intelligence can replace human labor in the near future seems far-fetched, given the low success rate of even a diagnosis with such a clear mechanism and treatment, and individualized treatment approaches.

Palabras Clave: Artificial intelligence. ChatGPT. Dietary management. Inherited metabolic disorders. Methylmalonic acidemia.



Pinto A, Evans S, Daly A, Almeida MF, Assoun M, Belanger-Quintana A, et al. Dietary practices in methylmalonic acidaemia: a European survey. Journal of Pediatric Endocrinology and Metabolism. 2020;33(1):147-55.
DOI: 10.1515/jpem-2019-0277
Manoli I, Sloan JL, Venditti CP. Isolated methylmalonic acidemia. 2016.
Myles JG, Manoli I, Venditti CP. Effects of medical food leucine content in the management of methylmalonic and propionic acidemias. Current Opinion in Clinical Nutrition & Metabolic Care. 2018;21(1):42-8.
DOI: 10.1097/MCO.0000000000000428
Tan SS-L, Goonawardene N. Internet health information seeking and the patient-physician relationship: a systematic review. Journal of medical Internet research. 2017;19(1):e9.
DOI: 10.2196/jmir.5729
Ponzo V, Goitre I, Favaro E, Merlo FD, Mancino MV, Riso S, et al. Is ChatGPT an Effective Tool for Providing Dietary Advice? Nutrients. 2024;16(4):469.
DOI: 10.3390/nu16040469
Sallam M, editor ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare; 2023: MDPI.
DOI: 10.3390/healthcare11060887
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future healthcare journal. 2019;6(2):94-8.
DOI: 10.7861/futurehosp.6-2-94
Sharma S, Pajai S, Prasad R, Wanjari MB, Munjewar PK, Sharma R, et al. A critical review of ChatGPT as a potential substitute for diabetes educators. Cureus. 2023;15(5).
DOI: 10.7759/cureus.38380
Garcia MB. ChatGPT as a virtual dietitian: Exploring its potential as a tool for improving nutrition knowledge. Applied System Innovation. 2023;6(5):96.
DOI: 10.3390/asi6050096
Kirk D, van Eijnatten E, Camps G. Comparison of answers between ChatGPT and human dieticians to common nutrition questions. Journal of Nutrition and Metabolism. 2023;2023(1):5548684.
DOI: 10.1155/2023/5548684
Papastratis I, Stergioulas A, Konstantinidis D, Daras P, Dimitropoulos K. Can ChatGPT provide appropriate meal plans for NCD patients? Nutrition. 2024;121:112291.
DOI: 10.1016/j.nut.2023.112291
Chatelan A, Clerc A, Fonta P-A. ChatGPT and future artificial intelligence chatbots: what may be the influence on credentialed nutrition and dietetics practitioners? Journal of the Academy of Nutrition and Dietetics. 2023;123(11):1525-31.
DOI: 10.1016/j.jand.2023.08.001
Niszczota P, Rybicka I. The credibility of dietary advice formulated by ChatGPT: robo-diets for people with food allergies. Nutrition. 2023;112:112076.
DOI: 10.1016/j.nut.2023.112076
Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, et al. Nutrition management guideline for propionic acidemia: An evidence-and consensus-based approach. Molecular Genetics and Metabolism. 2019;126(4):341-54.
DOI: 10.1016/j.ymgme.2019.02.007
Yannicelli S. Nutrition management of patients with inherited disorders of organic acid metabolism. Nutrition management of patients with inherited metabolic disorders Boston: Jones and Bartlett publishers. 2010:314.
Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet journal of rare diseases. 2014;9:1-36.
DOI: 10.1186/s13023-014-0130-8
van Calcar S. Nutrition Management of Propionic Acidemia and Methylmalonic Acidemia. Nutrition Management of Inherited Metabolic Diseases: Lessons from Metabolic University. 2015:221-8.
DOI: 10.1007/978-3-319-14621-8_20
Bernstein LE, Burns C, Drumm M, Gaughan S, Sailer M, Baker II PR. Impact on isoleucine and valine supplementation when decreasing use of medical food in the nutritional management of methylmalonic acidemia. Nutrients. 2020;12(2):473.
DOI: 10.3390/nu12020473
Li R, Kumar A, Chen JH. How chatbots and large language model artificial intelligence systems will reshape modern medicine: fountain of creativity or pandora’s box? JAMA Internal Medicine. 2023;183(6):596-7.
DOI: 10.1001/jamainternmed.2023.1835
Sowa M. Nutrition management of propionic acidemia and methylmalonic acidemia. Nutrition Management of Inherited Metabolic Diseases: Lessons from Metabolic University: Springer; 2022. p. 295-305.
DOI: 10.1007/978-3-030-94510-7_21
Dixon M, MacDonald A, White F, Stafford J. Disorders of amino acid metabolism, organic acidaemias and urea cycle disorders. Clinical paediatric dietetics. 2014:381-525.
DOI: 10.1002/9781118915349.ch17

Artículos Relacionados:

Nota Clínica: Late-onset methylmalonic acidemia and homocysteinemia

Noemí Brox-Torrecilla , Loredana Arhip , María Miguélez-González , Sandra Castellano-Gasch , Ana Contreras-Chicote , María Luisa Rodríguez-Ferrero , Marta Motilla de la Cámara , Clara Serrano-Moreno , Cristina Cuerda

Publicado: 2021-03-24 / http://dx.doi.org/10.20960/nh.03623

Nota Clínica: Combinación de acidemia metilmalónica y homocisteinuria; a propósito de un caso

Publicado: 2021-11-29 / http://dx.doi.org/

Carta Editor: Algoritmos de búsqueda e inteligencia artificial, una ayuda imprescindible en el desarrollo de revisiones sistematizadas

Marcela Caviedes-Olmos , Ángel Roco-Videla

Publicado: 2022-06-30 / http://dx.doi.org/10.20960/nh.04336

Trabajo Original: Beneficios del uso de un algoritmo de pruebas recomendadas para el diagnóstico y manejo dietético-nutricional del paciente con trastornos gastrointestinales crónicos

Alexandra Celi , María Trelis Villanueva , Bárbara Tena , Silvia Taroncher , José M. Soriano , Juan Francisco Merino Torres

Publicado: 2022-11-05 / http://dx.doi.org/10.20960/nh.04518

Carta Editor: La inteligencia artificial y su implicación en el desarrollo de revisiones sistematizadas. Usos y limitaciones

Ángel Roco-Videla , Marcela Caviedes-Olmos , Raúl Aguilera-Eguía , Mariela Olguín-Barraza

Publicado: 2023-08-21 / http://dx.doi.org/10.20960/nh.04889

Trabajo Original: Impact of a 6-week dietary and lifestyle modification intervention on food cravings and eating behaviors in women

Pınar Hamurcu , Seminur Barlak

Publicado: 2023-09-19 / http://dx.doi.org/10.20960/nh.04943

Artículo Especial: Role of artificial intelligence in predicting disease-related malnutrition - A narrative review

Daniel de Luis , Juan José López Gómez , David Emilio Barajas Galindo , Cristina García García

Publicado: 2024-12-16 / http://dx.doi.org/10.20960/nh.05672

Revisión: Inteligencia artificial generativa ChatGPT en nutrición clínica: avances y desafíos

Daniel de Luis

Publicado: 2024-12-31 / http://dx.doi.org/10.20960/nh.05692

Revisión: Análisis de composición corporal en tomografía computarizada mediante programas informáticos de segmentación gratuitos

Andrés Jiménez-Sánchez , Pedro Pablo García-Luna

Publicado: 2025-01-07 / http://dx.doi.org/10.20960/nh.05699

Revisión: Reto clínico 4. Y en el paciente crítico… ¿Puedo utilizar estrategias de inteligencia artificial para mejorar los resultados clínicos?

Joaquín Álvarez Rodríguez

Publicado: 2025-02-06 / http://dx.doi.org/10.20960/nh.05775

Trabajo Original: Marcador albúmina-mioestatosis asistido por una herramienta de inteligencia artificial como factor pronóstico en pacientes con cáncer colorrectal metastásico

Daniel de Luis , David Primo , Olatz Izaola , Israel Sánchez Lite , Juan José López Gómez

Publicado: 2024-12-27 / http://dx.doi.org/10.20960/nh.05687

Revisión: Desarrollo de un producto alimenticio. Alto rigor de la inteligencia artificial como herramienta de innovación

Rafael Urrialde

Publicado: 2025-07-18 / http://dx.doi.org/10.20960/nh.06098

Artículos más populares

Revisión: Inteligencia artificial generativa ChatGPT en nutrición clínica: avances y desafíos

ChatGPT y otras herramientas de inteligencia artif...

Publicado: 2024-12-31

Revisión: Suplementación con micronutrientes y sus beneficios: ¿por qué y cuándo?

Introducción: los micronutrientes participan en la...

Publicado: 2025-07-18

Trabajo Original: Effect of an oral inmunoenhanced formula on sarcopenia and quality of life in ambulatory patients with cancer

Background: patients with cancer are a group of hi...

Publicado: 2024-11-29

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.