Forbes SC, Candow DG, Smith-Ryan AE, Hirsch KR, Roberts MD, Vandusseldorp TA, et al. Supplements and nutritional interventions to augment high-intensity interval training physiological and performance adaptations — A narrative review. Nutrients. 2020;12(2):. https://doi.org/10.3390/nu12020390.
DOI: 10.3390/nu12020390
Ojeda ÁH, Contreras-Montilla O, Maliqueo SG, Jorquera-Aguilera C, Fuentes-Kloss R, Guisado-Barrilao R. Effects of acute supplementation with beta-alanine on a limited time test at maximum aerobic speed on endurance athletes. Nutr Hosp. 2019;36(3):698–705. https://doi.org/10.20960/nh.02310.
DOI: 10.20960/nh.02310
Trexler ET, Smith-Ryan AE, Stout JR, Hoffman JR, Wilborn CD, Sale C, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sports Nutr. 2015;12(20):1–14. https://doi.org/10.1186/s12970-015-0090-y.
DOI: 10.1186/s12970-015-0090-y
Hill C, Harris R, Kim H, Harris B, Sale C, Boobis L, et al. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32225–33. https://doi.org/10.1007/s00726-006-0364-4.
DOI: 10.1007/s00726-006-0364-4
Spelnikov D, Harris RC. A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids. 2019;51(1):115–21. https://doi.org/10.1007/s00726-018-2646-z.
DOI: 10.1007/s00726-018-2646-z
Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied b-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30279–89. https://doi.org/10.1007/s00726-006-0299-9.
DOI: 10.1007/s00726-006-0299-9
Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids. 2012;43(1):25–37. https://doi.org/10.1007/s00726-011-1200-z.
DOI: 10.1007/s00726-011-1200-z
Hoffman JR, Stout JR, Harris RC, Moran DS. β-Alanine supplementation and military performance. Amino Acids. 2015;47(12):2463–74. https://doi.org/10.1007/s00726-015-2051-9.
DOI: 10.1007/s00726-015-2051-9
Huerta Ojeda Á, Tapia Cerda C, Poblete Salvatierra MF, Barahona-Fuentes G, Jorquera Aguilera C. Effects of beta-alanine supplementation on physical performance in aerobic--anaerobic transition zones: A systematic review and meta-analysis. Nutrients. 2020;12(9):2490. https://doi.org/10.3390/nu12092490.
DOI: 10.3390/nu12092490
Ojeda ÁH, Barahona-fuentes G, Galdames S, Solis MG, Mercedes-Mercedes E, Jorquera-Aguilera C. Acute supplementation with Beta-Alanine improves performance in aerobic-anaerobic transition zones in endurance athletes. J Am Coll Nutr. 2022;1–8. https://doi.org/10.1080/07315724.2021.2020183.
DOI: 10.1080/07315724.2021.2020183
Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Heal. 1990;16(SUPPL. 1):55–8. https://doi.org/10.5271/sjweh.1815.
DOI: 10.5271/sjweh.1815
Conde J. La interacción de la carga de trabajo física y mental en la percepción de la fatiga física durante y después de un ejercicio físico hasta el agotamiento. Universidad de Granada, 2011;
Alsamir Tibana R, de Sousa N, Prestes J, da Cunha Nascimento D, Ernesto C, Falk Neto JH, et al. Is perceived exertion a useful indicator of the metabolic and cardiovascular responses to a metabolic conditioning session of functional fitness? Sports. 2019;7(7):161. https://doi.org/10.3390/sports7070161.
DOI: 10.3390/sports7070161
Coquart JB, Garcin M, Parfitt G, Tourny-Chollet C, Eston RG. Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sport Med. 2014;44(5):563–78. https://doi.org/10.1007/s40279-013-0139-5.
DOI: 10.1007/s40279-013-0139-5
Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113(1):147–55. https://doi.org/10.1007/s00421-012-2421-x.
DOI: 10.1007/s00421-012-2421-x
Foster C, Boullosa D, McGuigan M, Fusco A, Cortis C, Arney BE, et al. 25 years of session rating of perceived exertion: Historical perspective and development. Int J Sports Physiol Perform. 2021;16(5):612–21. https://doi.org/10.1123/ijspp.2020-0599.
DOI: 10.1123/ijspp.2020-0599
Barahona-Fuentes G, Ojeda ÁH, Jerez-Mayorga D. Effects of different methods of strength training on indicators of muscle fatigue during and after strength training: a systematic review. Motriz J Phys Educ. 2020;26(3):e10200063. https://doi.org/10.1590/S1980-6574202000030063.
DOI: 10.1590/s1980-6574202000030063
Utter AC, Kang J, Nieman DC, Dumke CL, McAnulty StR, McAnulty LS. Carbohydrate attenuates perceived exertion during intermittent exercise and recovery. Med Sci Sports Exerc. 2007;39(5):880–5. https://doi.org/10.1249/mss.0b013e31803174a8.
DOI: 10.1249/mss.0b013e31803174a8
Ekblom B, Golobarg AN. The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiol Scand. 1971;83(3):399–406. https://doi.org/10.1111/j.1748-1716.1971.tb05093.x.
DOI: 10.1111/j.1748-1716.1971.tb05093.x
Ducker KJ, Dawson B, Wallman KE. Effect of beta-alanine supplementation on 800-m running performance. Int J Sport Nutr Exerc Metab. 2013;23(6):554–61. https://doi.org/10.1123/ijsnem.23.6.554.
DOI: 10.1123/ijsnem.23.6.554
Roveratti MC, Jacinto JL, Oliveira DB, da Silva RA, Andraus RAC, de Oliveira EP, et al. Effects of beta-alanine supplementation on muscle function during recovery from resistance exercise in young adults. Amino Acids. 2019;51(4):589–97. https://doi.org/10.1007/s00726-018-02686-y.
DOI: 10.1007/s00726-018-02686-y
Domínguez R, Lougedo JH, Maté-Muñoz JL, Garnacho-Castaño M V. Efectos de la suplementación con ß-alanina sobre el rendimiento deportivo. Nutr Hosp. 2015;31(1):155–69. https://doi.org/10.3305/nh.2015.31.1.7517.
Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med. 2019;40(13):813–7. https://doi.org/10.1055/a-1015-3123.
DOI: 10.1055/a-1015-3123
Barrera A, Gladys M. Estandáres antropométricos para evaluación del estado nutritivo. INTA. Santiago, Chile: 2004;
Salatto RW, McGinnis GR, Davis DW, Carrier B, Manning JW, DeBeliso M, et al. Effects of acute Beta-Alanine ingestion and immersion-plus-exercise on connectedness to nature and perceived pain. Int J Environ Res Public Health. 2021;18(15):8134. https://doi.org/10.3390/ijerph18158134.
DOI: 10.3390/ijerph18158134
Ojeda ÁH, Maliqueo SG, Pizarro JP, Kloss RF. Validation of the 6-minute race test as a predictor of maximal aerobic speed in university endurance athletes. Isokinet Exerc Sci. 2020;28(4):383–90. https://doi.org/10.3233/IES-192229.
DOI: 10.3233/IES-192229
Ojeda ÁH, Barahona-Fuentes G, Maliqueo SG. A qualitative scale of the 6-minute race test to evaluate maximum aerobic speed in physically active people from 18 to 25 years. J Phys Ther Sci. 2021;33(4):316–21. https://doi.org/10.1589/jpts.33.316.
DOI: 10.1589/jpts.33.316
Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–12. https://doi.org/10.1249/MSS.0b013e31818cb278.
DOI: 10.1249/MSS.0b013e31818cb278
Demura S, Nagasawa Y, Kitabayayashi T, Matsuzawa J. Effect of amino acid mixture intake on physiological responses and rating of perceived exertion during cycling exercise. Percept Mot Skills. 2003;96883–95. https://doi.org/10.2466/pms.2003.96.3.883.
DOI: 10.2466/pms.2003.96.3.883
Santesteban Moriones V, Ibáñez Santos J. Ayudas ergogénicas en el deporte [Ergogenic aids in sport]. Nutr Hosp. 2017;34(1):204–15. https://doi.org/10.20960/nh.997.
DOI: 10.20960/nh.997
Bountra C, Vaughan-Jones RD. Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J Physiol. 1989;418(1):163–87. https://doi.org/10.1113/jphysiol.1989.sp017833.
DOI: 10.1113/jphysiol.1989.sp017833
Artioli GG, Gualano B, Smith A, Stout J, Lancha Jr AH, others. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sport Exerc. 2010;42(6):1162–73. https://doi.org/10.1249/MSS.0b013e3181c74e38.
DOI: 10.1249/MSS.0b013e3181c74e38
Bellinger PM. β-alanine supplementation for athletic performance:un update. J Strength Cond Res. 2014;28(6):1751–70. https://doi.org/10.1519/JSC.0000000000000327.
DOI: 10.1519/JSC.0000000000000327
Crawford DA, Drake NB, Carper MJ, DeBlauw J, Heinrich KM. Validity, reliability, and application of the session-RPE method for quantifying training loads during high intensity functional training. Sports. 2018;6(3):84. https://doi.org/10.3390/sports6030084.
DOI: 10.3390/sports6030084
Falk Neto JH, Tibana RA, de Sousa NMF, Prestes J, Voltarelli FA, Kennedy MD. Session rating of perceived exertion is a superior method to monitor internal training loads of functional fitness training sessions performed at different intensities when compared to training impulse. Front Physiol. 2020;11919. https://doi.org/10.3389/fphys.2020.00919.
DOI: 10.3389/fphys.2020.00919
Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of b -alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32225–33. https://doi.org/10.1007/s00726-006-0364-4.
DOI: 10.1007/s00726-006-0364-4
Zignoli A, Fornasiero A, Bertolazzi E, Pellegrini B, Schena F, Biral F, et al. State-of-the art concepts and future directions in modelling oxygen consumption and lactate concentration in cycling exercise. Sport Sci Health. 2019;15(2):295–310. https://doi.org/10.1007/s11332-019-00557-x.
DOI: 10.1007/s11332-019-00557-x
Goodwin ML, Harris JE, Hernández A, Gladden LB. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol. 2007;1(4):558–69. https://doi.org/10.1177/193229680700100414.
DOI: 10.1177/193229680700100414